鋼筋混凝土梁穿孔新工法之研究

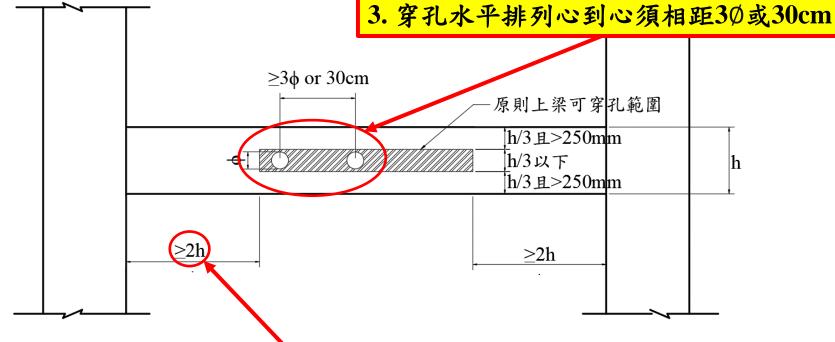
Study on the Novel Retrofit Methods of the Transverse Circular Opening in an RC Beam

邱建國博士 台灣營建研究院院長 國立台灣科技大學營建工程系特聘教授 國震中心建物組領域召集人 2025/07

報告大綱

- 一. 序論
- 二. 文獻回顧
- 三. 試體設計與規劃
- 四. 試驗過程與結果
- 五. 試驗分析與討論
- 六. 結論與建議

一.序論


- 二. 文獻回顧
- 三. 試體設計與規劃
- 四.試驗過程與結果
- 五.試驗分析與討論
- 六.結論與建議

序論-1.1 研究背景介紹

RC梁穿孔設計建議(過去)

- 1. 穿孔孔徑不得大於1/3梁深
- 2. 穿孔不可在同一斷面垂直排列

4.距離柱面兩倍梁深內不得穿孔

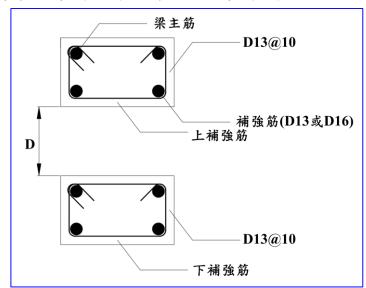
ー 、 **序 論** - 1.1 研究背景介紹

台灣之穿孔補強參考方式

- 1. 使用Z字型斜向補強筋
- 2. 穿孔上下方使用小箍筋
- 3. 穿孔處使用橫筋與小箍筋

進行綁紮

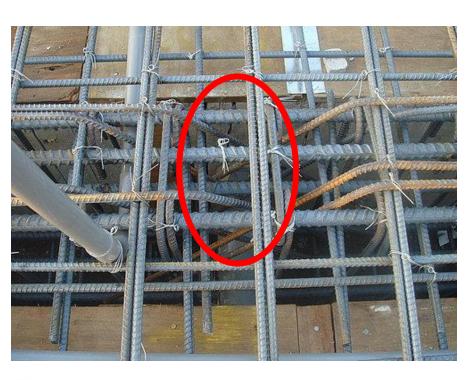
不同孔徑需配置不同型號之



註:Cuton為斜向鋼筋延伸處受拉伸展長度(同頂層拉力鋼筋伸展長度)

鋼筋,如下表所示:

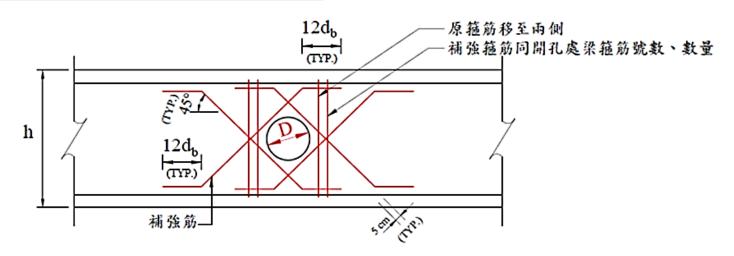
單位:cm	Ø<10	10<Ø<20	20<Ø<30	30<Ø<40
補強箍筋	4-D13	4-D13	4-D16	4-D19
斜筋	8-D13	8-D13	8-D16	8-D19
横筋	-	4-D13	4-D16	4-D19
上下箍筋	-	3-D13	4-D13	6-D13


圖源:中華民國結構工程技師公會全國聯合會鋼筋混凝土結構標準圖

ゝ序論-1.1 研究背景介紹

穿孔補強現場補強筋施工狀況

穿孔上方並無配置箍筋



梁穿孔處俯視圖

一、**序論-**1.1 研究背景介紹

中華民國結構工程技師公會全國聯合會-

建築物結構鋼筋混凝土結構標準圖說(113年01月版)

其穿孔的位置、大小及 補強方式皆有嚴格的規定

穿孔大小	補強筋		
D≦h/10	可不用补強		
h/10 <d<10 cm<="" td=""><td colspan="3">2-D10</td></d<10>	2-D10		
10 cm <d<20 cm<="" td=""><td>2-D13</td></d<20>	2-D13		
20 cm <d<h 3<="" td=""><td>2-D16</td></d<h>	2-D16		

附註:

- 1. D=穿孔孔徑。
- 2. 距柱面1倍梁深範圍內不得穿孔。
- 3. 距柱面1倍~2倍梁深範圍內,穿孔孔徑不得大於1/4梁深。

規範問題??

- 4. 距柱面2倍以上梁深範圍內,穿孔孔徑不得大於1/3梁深。
- 5. 穿孔不可在同一斷面垂直排列。
- 6. 穿孔水平排列中心須相距3D或30 cm以上。
- 7. 各補強鋼筋(箍筋除外),須自鋼筋交點起有足夠伸展長度
- 8. 穿孔外緣與鋼筋距離須滿足相關保護層厚度之需求。
- 9. 孔位處之箍筋平移至孔之兩側。

NTUST

Life-cycle of Structural Engineering

一、**序論-**1.1 研究背景介紹

- 18.3.4.1 閉合箍筋應設置於梁之下列部位:
 - (a) 梁之兩端由支承柱面向跨度中央2倍梁深之範圍內。
 - (b) 由非彈性側向變位所引起撓曲降伏之斷面向兩側各2倍梁深之範圍內。
- 18.3.4.4 第一個閉合箍筋距支承柱面應不超過5 cm。閉合箍筋間距應不超過(a)至(e)之最小值:
 - (a) d/4
 - (b) 15 cm
 - (c) 對 f_y = 4,200 kgf/cm² [420 MPa] 鋼筋而言,除第9.7.2.3節中所需之縱向表層鋼筋外之最小主要撓曲鋼筋直徑之6倍。
 - (d) 對 $f_v = 5,000 \text{ kgf/cm}^2$ [490 MPa] 鋼筋而言,除第9.7.2.3節中所需之縱向表層鋼筋外之最小主要撓曲鋼筋直徑之5.5倍。
 - (e) 對 $f_y = 5,600 \, \text{kgf/cm}^2$ [550 MPa] 鋼筋而言,除第9.7.2.3節中所需之縱向表層鋼筋外之最小主要撓曲鋼筋直徑之5倍。

一、序論-1.2 研究動機與目的

- ·梁構件穿孔位置限制
- 穿孔周圍配筋方式

周玠慈(2022)-鋼筋混凝土梁穿孔補強新工法之研究

- 1. 了解梁構件於塑鉸區穿孔後之往復載重行為,並且評估不同穿孔 周圍配筋型式之有效性。
- 2. 探討不同配筋補強下的穿孔周圍混凝土力學行為與破壞模式。
- 3. 比較不同規範或文獻建議之剪力強度計算式。

一、序論-1.2 研究動機與目的

新工法配筋方式之實際剪力強度貢獻剪力強度建議計算式

何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究

- 1. 探討雙方型一筆箍以及補強肋筋的力學行為與破壞模式, 並藉由試驗結果評估不同搭配下之強度貢獻。
- 2. 藉由穿孔試體剪力破壞時之實際抗剪強度,修正強度之計 算建議公式。

序論-1.2 研究動機與目的

含穿孔T型梁之反復載重下力學行為 • 穿孔邊際距柱端距離

- 以含穿孔之T型梁探討雙方型一筆箍及U型斜向插筋的力 學行為與破壞模式。
- 2. 主要探討穿孔邊際距柱端距離之最小容許值。

一.序論

二. 文獻回顧

三. 試體設計與規劃

四.試驗過程與結果

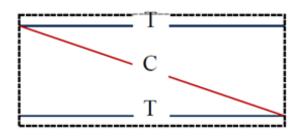
五.試驗分析與討論

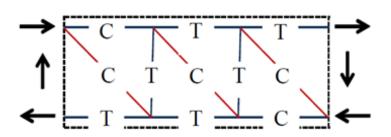
六.結論與建議

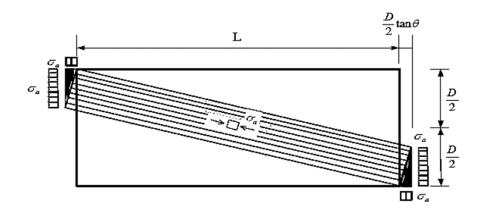
二、文獻回顧

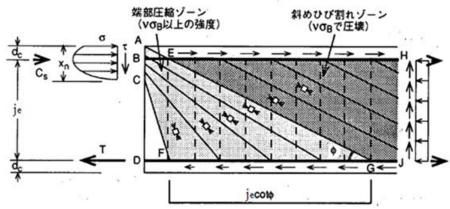
2.1 AIJ-1999

2.2 AIJ-2010

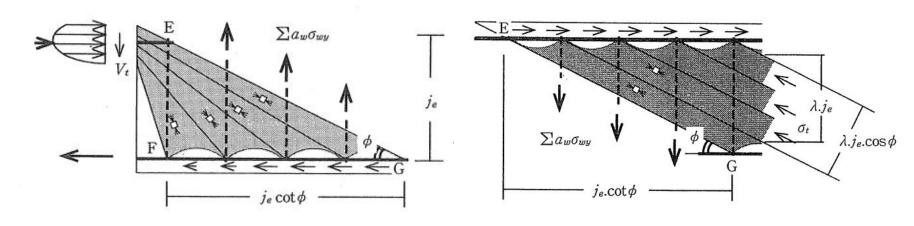

2.3 穿孔剪力計算及補強方式相關文獻

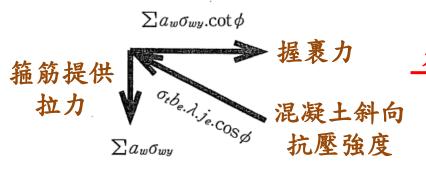

二、文獻回顧-2.1 AIJ-1999


未穿孔梁構件


壓桿拱機制

桁架機制

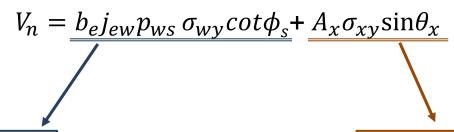


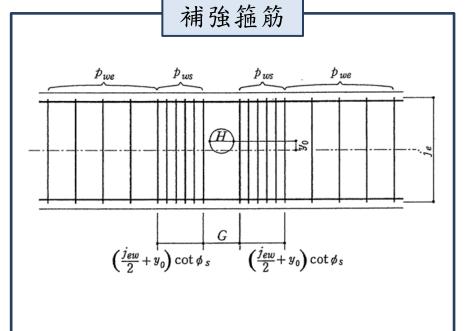


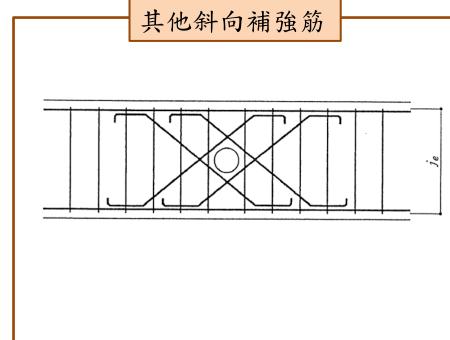
二、文獻回顧-2.1 AIJ-1999

未穿孔梁構件

桁架效應的力平衡


$$begin{aligned} begin{aligned} begin{alig$$


$$V_n = \sum a_w \sigma_{wy} = p_{we} \sigma_{wy} b_e j_e \cot \phi$$

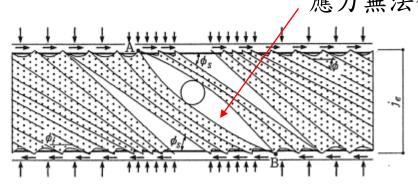


二、文獻回顧-2.1 AIJ-1999

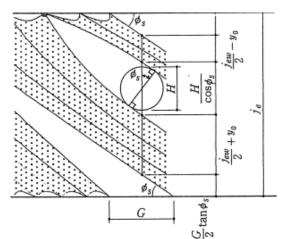
穿孔梁構件

、文獻回顧-2.1 AIJ-1999

穿孔梁構件


應力無法傳遞區域

G:穿孔兩側箍筋距離


H:穿孔直徑

Jew:穿孔後的有效深度

 $\overline{p_{ws} \, \sigma_{wy}}$

 $Gtan\phi s$ $j_{ew}=j_e-\frac{1}{COS\phi s}$

 $V_n = b_e j_{ew} p_{ws} \sigma_{wy} \cot \phi s + A_x \sigma_{xy} \sin \theta_x$

cotφs =

上限值

$$p_{ws} \, \sigma_{wy} = \lambda (\frac{1}{2} - \frac{H}{j_e}) \nu \sigma_B$$

若鋼筋量過高會造成無法降伏

Life-cycle

of Structural Engineering

二、文獻回顧

2.1 AIJ-1999

2.2 AIJ-2010

2.3 穿孔剪力計算及補強方式相關文獻

」、文獻回顧-2.2 AIJ-2010

	剪力計算公式		
長期容許剪力強度	$Q_{AO} = bj\{\alpha f_s(1 - H/D) + 0.5_w f_t(\rho_s - 0.002)\}$		
短期容許剪力強度	$Q_{AOS} = bj\{(2/3) \alpha f_s(1 - H/D) + 0.5_w f_t(\rho_s - 0.002)\}$		
強震下確保剪力強度	$Q_{suo} = \left\{ \frac{0.092 k_u k_p (F_c + 18)}{\frac{M}{Qd} + 0.12} \left(1 - 1.61 \frac{H}{D} \right) + 0.85 \sqrt{\rho_s \cdot \sigma_y} \right\} bj$		

 k_u :斷面尺寸修正係數 H:孔直徑 M:梁最大彎矩強度

 k_p : 受拉鋼筋修正係數 D: 深深度 Q: 深最大剪力強度

 F_c :混凝土設計強度 ho_s :孔周圍補強鋼筋比 d:梁有效深度

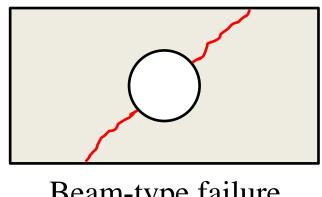
 σ_y :孔周圍補強鋼筋降伏強度 b:梁寬度

二、文獻回顧

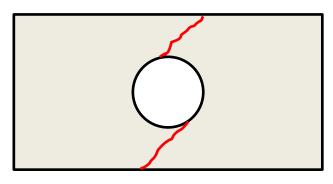
2.1 AIJ-1999

2.2 AIJ-2010

2.3 穿孔剪力計算及補強方式相關文獻


、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

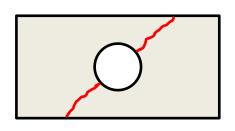
根據Mansur與Tan在ACI Structural Journal 之發表成果(1999)


依據裂縫樣式分為兩種破壞模式,以不同方式計算強度

- 1. Beam-type failure → 裂縫通過穿孔中心
- 2. Frame-type failure →穿孔上下兩條獨立對角裂縫

(計算時假設所有剪力筋皆降伏)

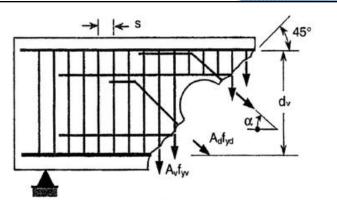
Beam-type failure



Frame-type failure

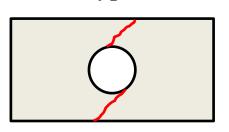
一、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

Beam-type failure



$$V_n = V_c + V_s$$

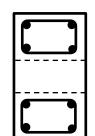
$$V_{S} = V_{Sv} + V_{Sd}$$


$$= \frac{A_v f_{yt}}{S} (d_v - d_o) + A_d f_{yd} \sin \alpha$$

$$V_c = \frac{1}{6} \sqrt{f_c'} b_w (d - d_o)$$

裂縫為45°時通過的垂直及 斜向鋼筋提供剪力強度

Frame-type failure



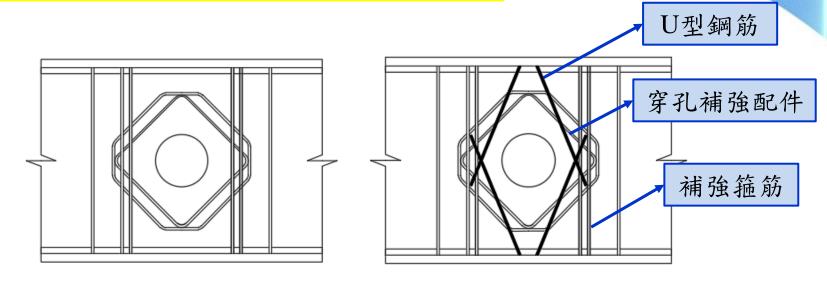
視為上下兩個獨立未穿孔的梁

$$V_n = V_c + V_s$$

$$V_{S} = \frac{A_{v} f_{yt} d}{S}$$

$$V_c = \frac{1}{6} \sqrt{f_c'} b_w d$$

$$(V_u)_t = V_u \left| \frac{A_t}{A_t + A_b} \right|$$

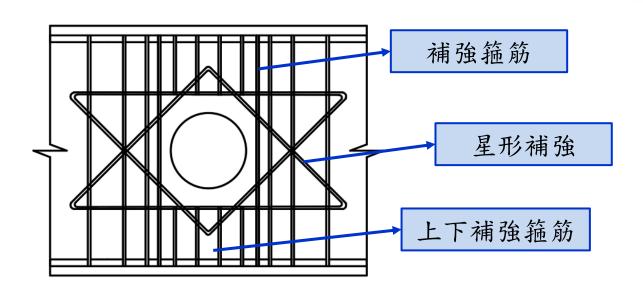

$$(V_{u})_{b} = V_{u} - (V_{u})_{t}$$

$$\downarrow^{\mathbf{w}} \downarrow \downarrow^{\mathbf{v}} \downarrow^{\mathbf{v}}$$

依據上下層撓曲鋼筋量之比例分配穿孔上下各別承受剪力

一、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

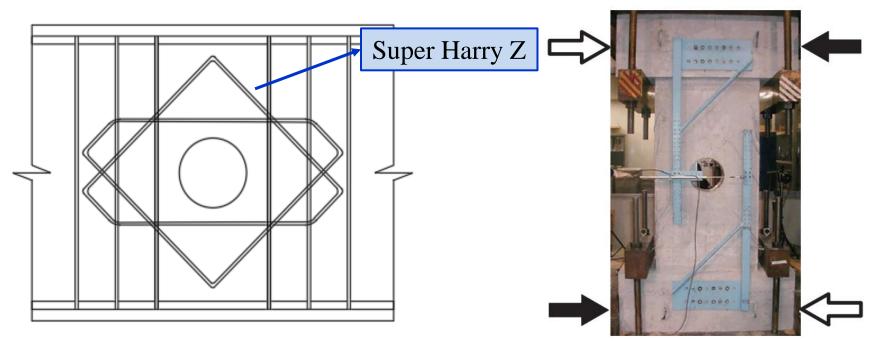
駿河良司及森本敏幸等人(2002)相關研究



- 1. 穿孔位置於梁端部1/3梁深位置,穿孔直徑(H/D=1/4)
- 2. 證明該方法補強可使其與非開孔梁相同的剪力強度和變形能力
- 3. 使用U型鋼筋補強穿孔,可以防止主筋挫屈和抑制穿孔周圍混 凝土破壞的蔓延

二、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

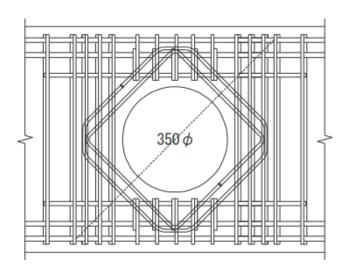
高森直樹及有馬義人等人(2007)相關研究


- 1. 穿孔位置於梁中心位置
- 2. 穿孔直徑(H/D=1/2)
- 3. 證明星形配筋的斜邊對裂縫寬度有顯著控制效果
- 4. 裂縫寬度的大小受孔周圍配筋比例和星形配筋角度的影響

、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

池田秀樹及椴木浩行(2006)相關研究

- 穿孔位置於梁正中央,穿孔直徑(H/D=1/3、1/4、1/4.8)
- 證明Super Harry Z補強穿孔梁具有AIJ-2010計算之抗剪強度
- 運用補強筋量與混凝土強度間的關係來預測穿孔補強筋的受力情形 **3.**



圖源:池田秀樹,椴木浩行(2006),梁貫通孔補強筋「スーパーハリーZ」を用いたRC 有孔梁のせん断耐力に関 CSE する研究

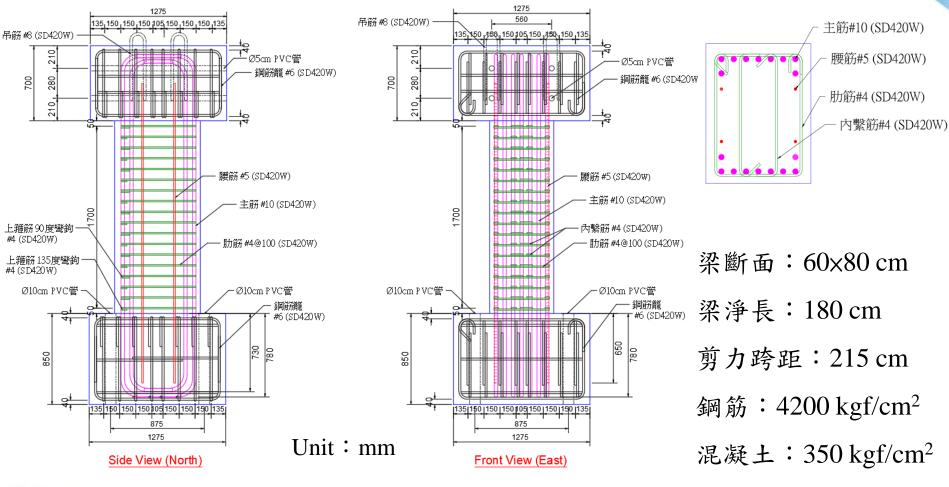
、文獻回顧-2.3 穿孔剪力計算及補強方式相關文獻

村上秀夫及森誠司等人(2018)相關研究

- 穿孔位置於梁正中央,穿孔直徑(H/D=1/3、1/2.5、1/2) 1.
- 梁深與穿孔直徑之比值愈大,試驗值相與AIJ-2010計算值愈接近
- 穿孔上下在有配置補強筋的狀況下,不同的補強筋比對剪力強度並無 **3.** 太大影響

圖源:開孔補強金物を用いた大開孔RC基礎梁のせん断性状に関する実験的研究

- 一. 緒論
- 二. 文獻回顧
- 三.試體設計與規劃
- 四.試驗過程與結果
- 五.試驗分析與討論
- 六.結論與建議


三、試體設計與規劃

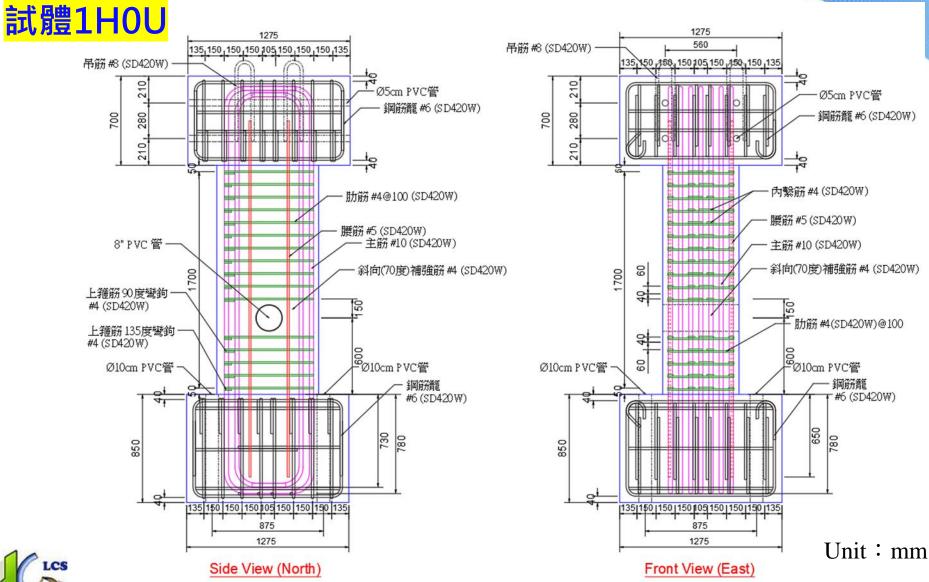
- 3.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究
- 3.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究
- 3.3 楊哲端(2025)- 具圖形穿孔之T型RC梁配筋設計研究

三、試體設計與規劃- 3.1 周玠慈(2022)

試體ND

三、試體設計與規劃-3.1周玠慈(2022)

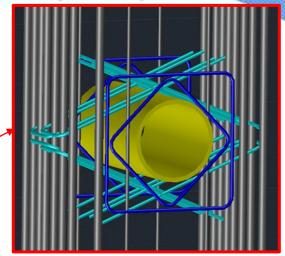
設計參數表

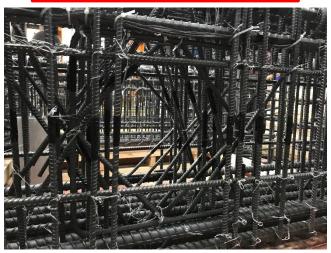

試體名稱	開孔中心與 底部距離	套管材質。	穿孔補強鋼筋種類			備註
四人位至7日7日7			雙方型	U型	其他	1 111
ND	-	-	-	-	-	無穿孔
1H0U	600 mm	PVC	-	-	-	
1H2U_Q	600 mm	PVC	0	8支	-	
1H3U_Q	600 mm	PVC	\circ	12支	-	
2HZ	1100 mm	PVC	-	-	Z型	現行方式
2H0U_Q	1100 mm	PVC	\circ	-	-	
2H1U_Q	1100 mm	PVC	0	4支	-	
2H0U_SQ	1100 mm	STK400	0	-	-	鋼套管
2H0U_QM	1100 mm	PVC	0	-	局部主筋	

H前數字:穿孔位置;U前數字:單側U型斜向補強筋數量;

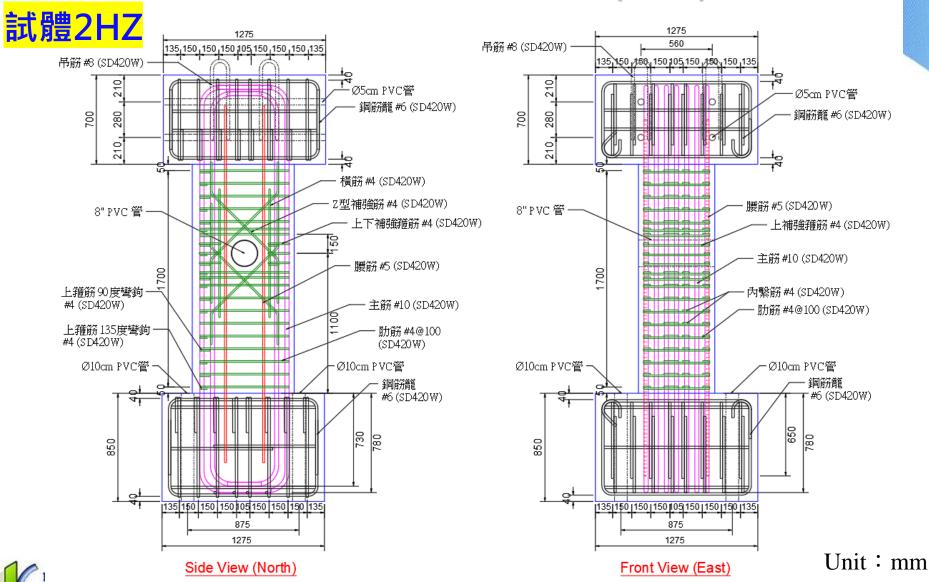
Q:雙方型一筆箍;S:鋼套管(其他採用PVC管);M:局部補強主筋

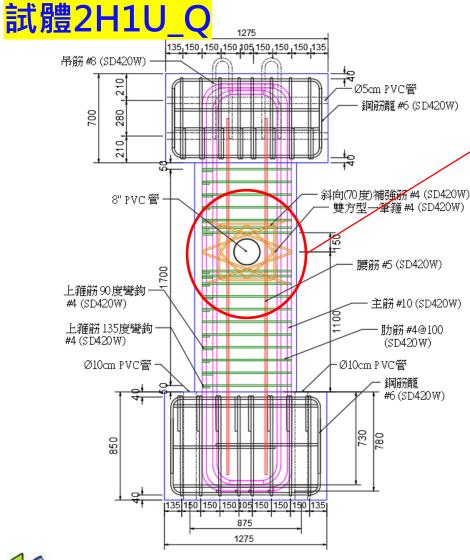


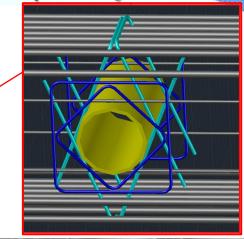

三、試體設計與規劃- 3.1 周玠慈(2022)



三、試體設計與規劃-3.1周玠慈(2022)




試體鋼筋實際綁紮情況

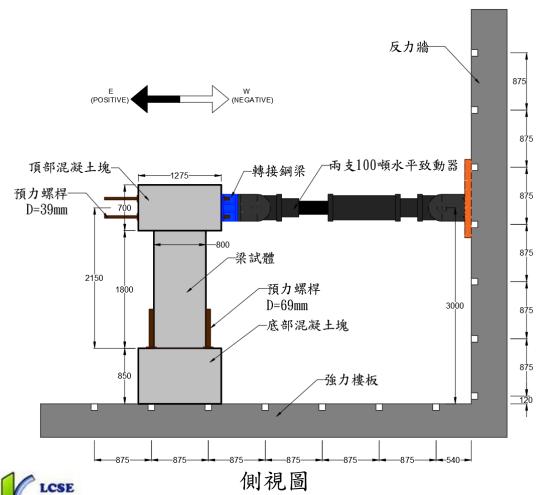

Side View (North)

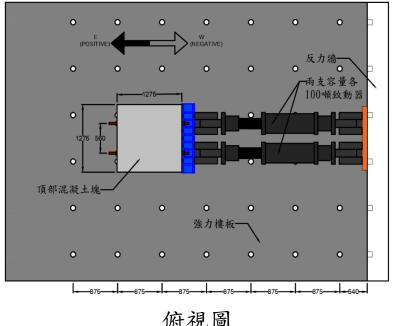
三、試體設計與規劃-3.1周玠慈(2022)

試體設計與規劃- 3.1 周玠慈(2022)

試體西面朝下時之鋼筋實際綁紮情況

三、試體設計與規劃- 3.1 周玠慈(2022)


試體2H0U_QM 1275 560 吊箭#8 (SD420W) 150 750 150 105 150 750 150 150 吊箭#8 (SD420W) 210 Ø5cm PVC管 Ø5cm PVC管 鋼箭籠 #6 (SD420W) 700 鋼筋籠 #6 (SD420W) 210 210 横筋 #4 (SD420W) 内繋筋 #4 (SD420W) 8" PVC 管 雙方型一筆箍 #4 (SD420W) 腰箭 #5 (SD420W) 雙方型一筆箍 #4 (SD420W) 8" PVC 管 腰筋#5(SD420W) 主箭 #10 (SD420W) 上箍筋 90 度彎鉤 ္ပါ 主箭 #10 (SD420W) #4 (SD420W) 肋箭 #4@100 (SD420W) 上箍筋 135度變鉤 肋箭#4@100 #4 (SD420W) (SD420W) Ø10cm PVC管 ·Ø10cm PVC管 Ø10cm PVC管 Ø10cm PVC管 鋼筋籠 鋼掰籠 #6 (SD420W) #6 (SD420W) 8 850 135 150 150 150 105 150 150 150 135 135 150 150 150 105 150 150 150 150 補強主筋#10(SD420W) 1275 1275 Unit: mm 共四支 長度為孔兩側各64cm Section(A Side View (North) Front View (East)


NTUST Life-cycle of Structural Engineering

試體設計與規劃- 3.1 周玠慈(2022)

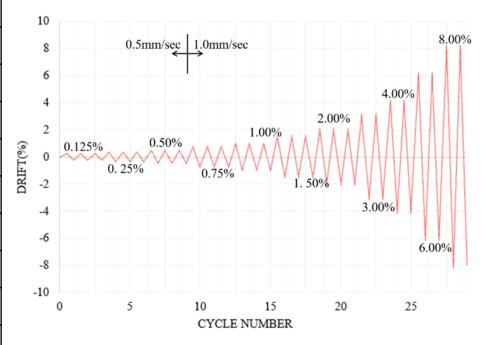
配置方式:直立式懸臂梁

試驗場地:台灣科技大學營建工程系結構實驗室

俯視圖

Life-cycle

of Structural


試體設計與規劃- 3.1 周玠慈(2022)

加載方式

77H - 707			_	
Drift(%)	Cycles	時間 (sec)	加載速率 (mm/sec)	千斤頂 位移量(mm)
0.125	3	5.375	0.5	2.6875
0.25	3	10.75	0.5	5.375
0.375	3	16.125	0.5	8.0625
0.5	3	21.5	0.5	10.75
0.75	3	16.125	1	16.125
1	3	21.5	1	21.5
1.5	3	32.25	1	32.25
2	3	43	1	43
3	2	64.5	1	64.5
4	2	86	1	86
6	2	129	1	129
8	2	172	1	172

外部位移控制

Drift Ratio: 位移量/剪力跨距

三、試體設計與規劃

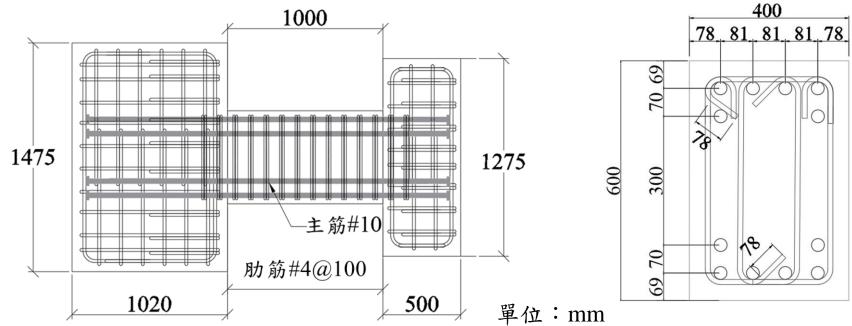
- 3.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究
- 3.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究
- 3.3 楊哲端(2025)- 具圖形穿孔之T型RC梁配筋設計研究

未穿孔試體與穿孔後未補強試體設計

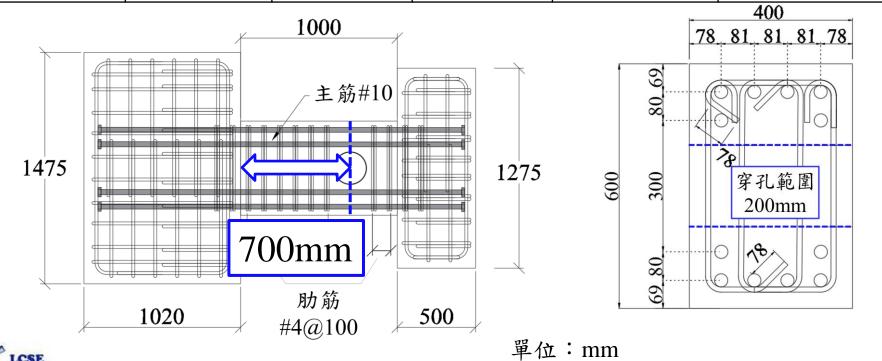
未穿孔試體ND

- ✓ 拉力鋼筋比為2.5%以下,肋筋依土木401-110之耐震規範進行設計。
- $ec{V}_{Mpr}$ 以5倍的混凝土強度 V_c 為目標進行設計。
- \checkmark 非穿孔處剪應力需求以ACI 318-19 建議 $0.67\sqrt{f_c}'$ (MPa)上限值為目標。

穿孔但未補強試體0S0Q


- ✓ 建議標準圖說建議上限 1/3 梁深(20 cm)。
- ✓ 穿孔範圍均位在一倍梁深以外,減少彎矩的影響。

試體ND

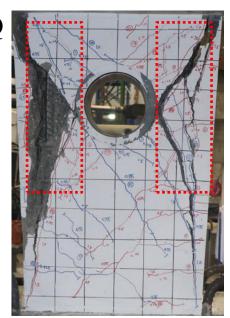

試體尺寸 $b \times D \times L_o$	混凝土 強度	梁主筋	拉力鋼筋比	横向鋼筋	横向鋼筋比
$400 \times 600 \times 1250$ ($L_o/D=2.08$)	28MPa	上: 6-#10 下: 6-#10 [SD420W]	2.4%	4-#4@100 [SD420W]	0.248%

註: L_o 為試體剪力跨度1250mm

試體OSOQ

標稱彎矩 強度 <i>M</i> " (tf-m)	可能 彎矩強度 <i>M_{pr}</i> (tf-m)	$V_{Mn} \ (M_n/L_o) \ (tf)$	$V_{Mpr} \ (M_{pr}/L_o) \ (ext{tf})$	箍筋 剪力強度V _s (tf)	斷面剪應力 (除以斷面積) (MPa)
82.02	101.96	65.62	81.57	108.81	0.63

Engineering


試體測試結果

先測試未穿孔試體(ND) 及穿孔後未補強試體(0S0Q)

✓ ND:撓剪破壞;0S0Q:穿孔處剪力破壞。

✓ 補強區間上限:94.08tf (ND);未補強剪力強度:70.72tf (0S0Q)。

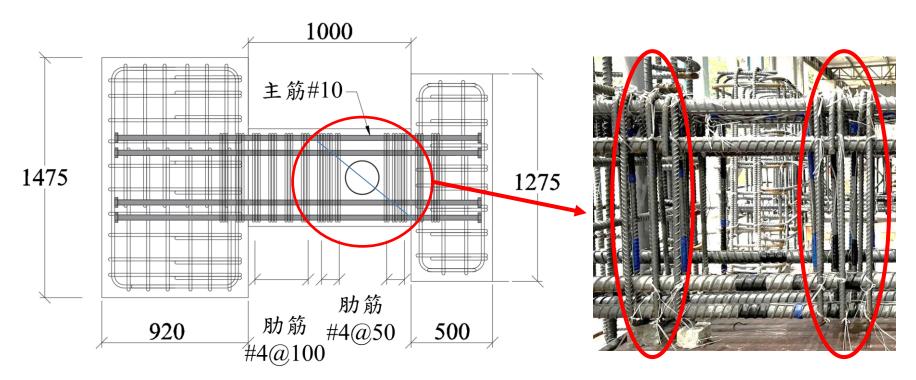
0S0Q

ND

設計參數表

S前數字:穿孔單側增加之肋筋數

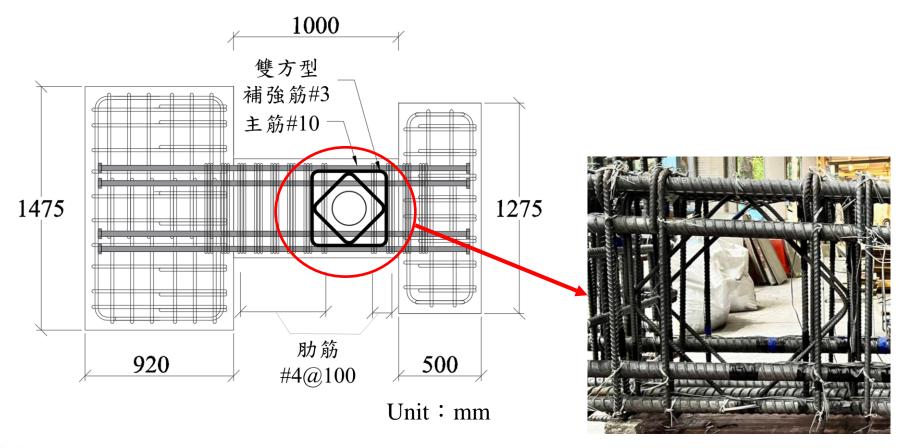
Q前數字:雙方型一筆箍


選擇新工法建議補強方式,以補強箍筋與雙方型一筆箍進行搭配

試體 開孔 名稱 中心位置		剪力跨距	套管材質	穿孔補強方式			
				穿孔兩旁 補強箍筋		雙方型	備註
石柵 T	1.0位重			補強 方式	箍筋 中心間距	一筆箍	
ND	-			-	10 000	-	無穿孔
0S0Q				-	10 cm	-	無補強
1S0Q		1250 mm	1250 mm PVC	使用#4- SD420W	5 cm	-	雙方
0S1Q	700 mm			•	10 cm	使用#3- SD420W	型
1S1Q				使用#3- SD280W	5 cm	使用#3- SD280W	籍

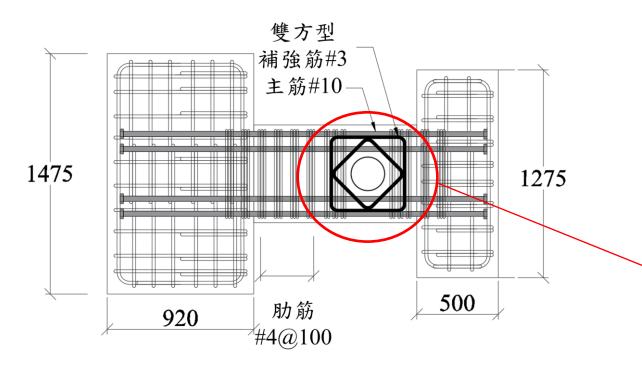
試體1S0Q

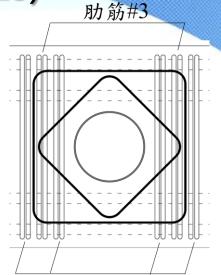
位於穿孔處之箍筋移至兩旁,強度同為#4-SD420W

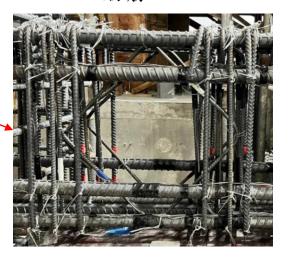


Unit: mm

試體0S1Q

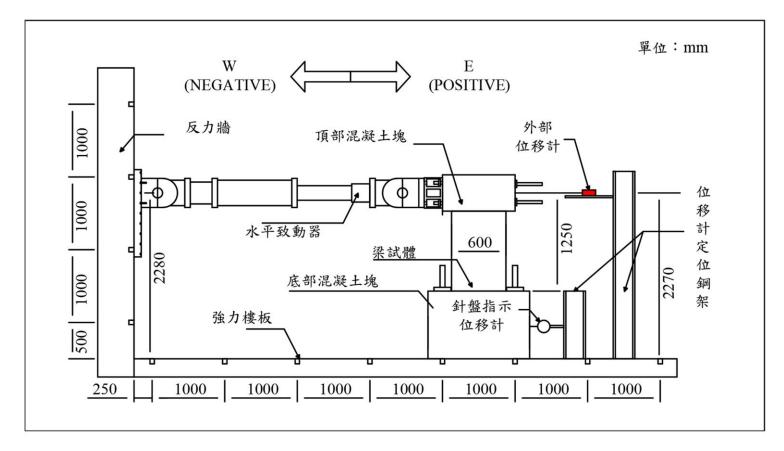

配置#3-SD420W之雙方型補強筋進行補強




試體1S1Q

位於穿孔處之箍筋移至兩旁,尺寸改為#3-SD280W 同時配置#3-SD280W之雙方型補強筋進行補強

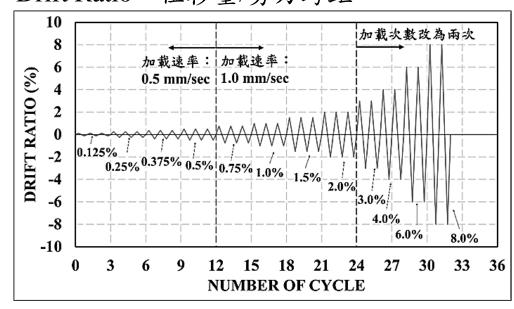
肋筋#4



Unit: mm

配置方式:直立式懸臂梁

試驗場地:國家地震研究中心實驗場/台科大實驗場

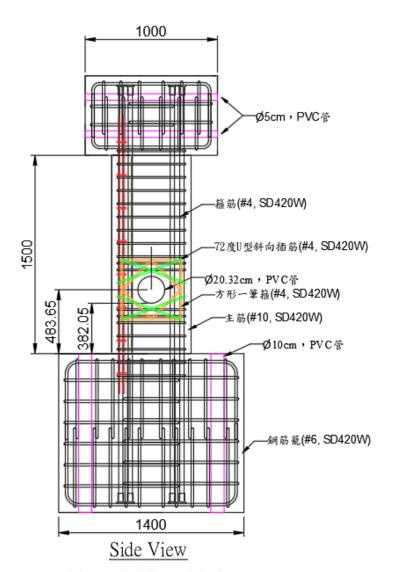

側視圖

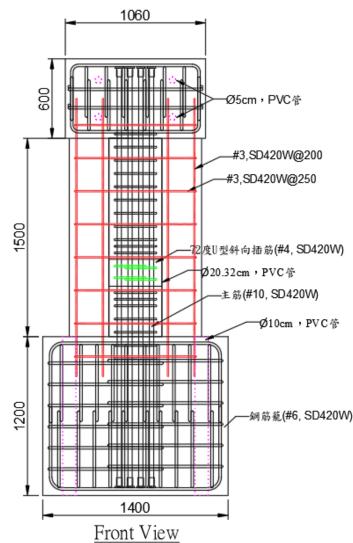
加載方式

73H +W/ J = V							
Drift(%)	Cycles	加載速率	位移量				
	Cycles	(mm/sec)	(mm)				
0.125	3	0.5	1.5625				
0.25	3	0.5	3.125				
0.375	3	0.5	4.6875				
0.5	3	0.5	6.25				
0.75	3	1	9.375				
1	3	1	12.5				
1.5	3	1	18.75				
2	3	1	25				
3	3	1	37.5				
4	3	1	50				
6	3	1	75				
8	3	1	100				

外部位移控制

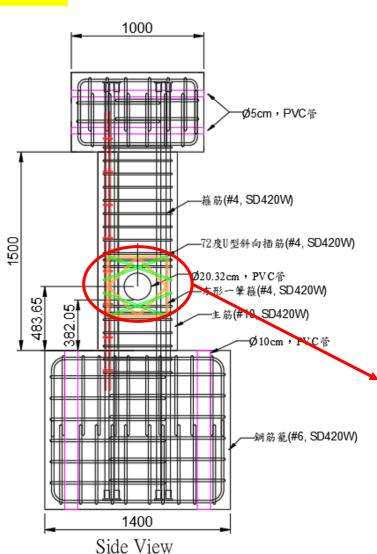
Drift Ratio: 位移量/剪力跨距

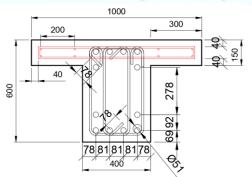



三、試體設計與規劃

- 3.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究
- 3.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究
- 3.3 楊哲端(2025)- 具圓形穿孔之T型RC梁配筋設計研究

試體2H2U





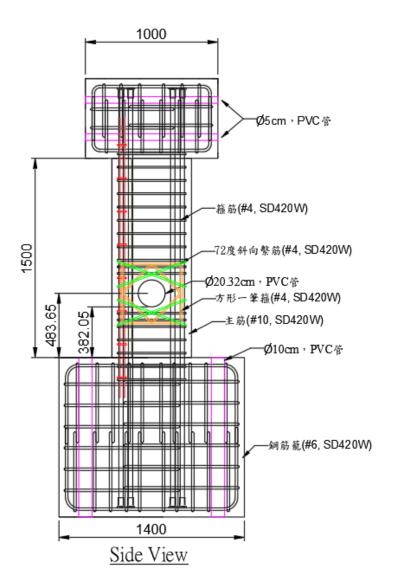
Life-cycle of Structural

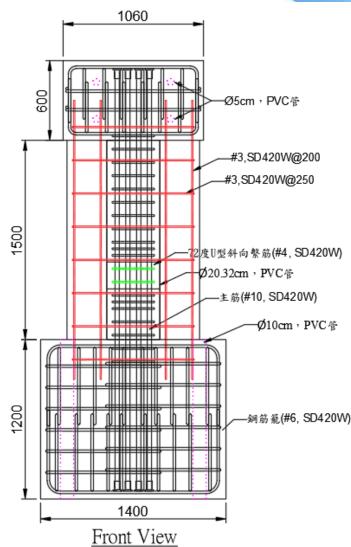
Engineering

試體2H2U

一般斷面

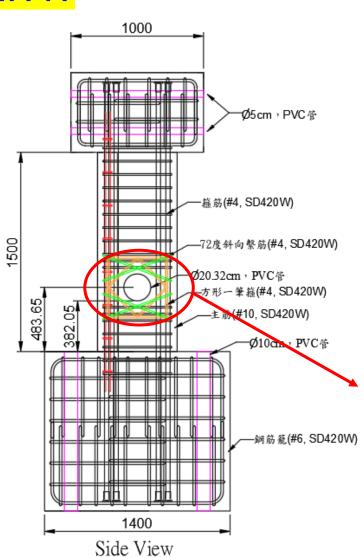
單位:mm

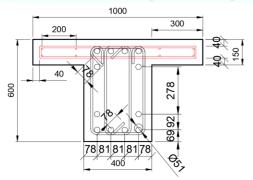




MI O 2 I

試體2H4T

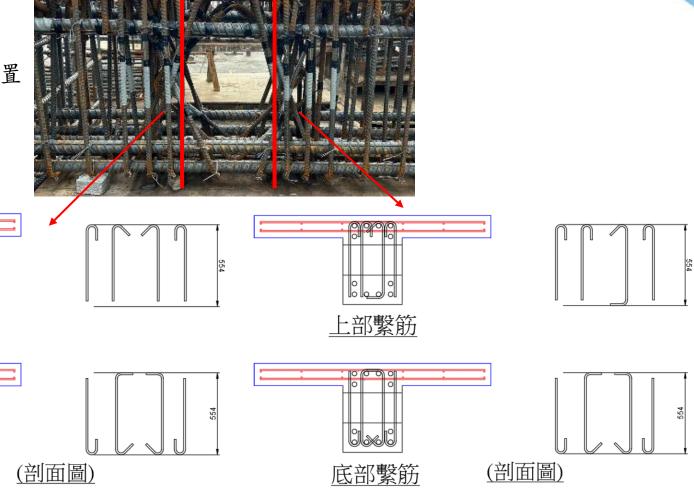




NTUST Life-cycle of Structural Engineering

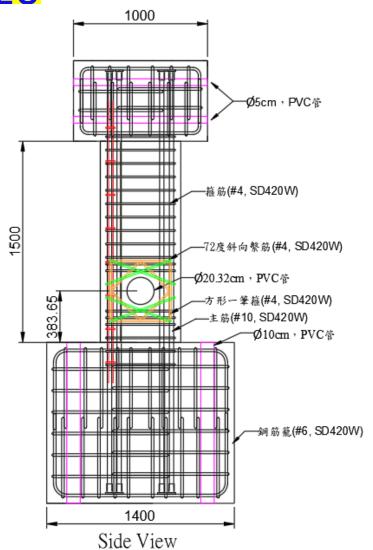
試體2H4T

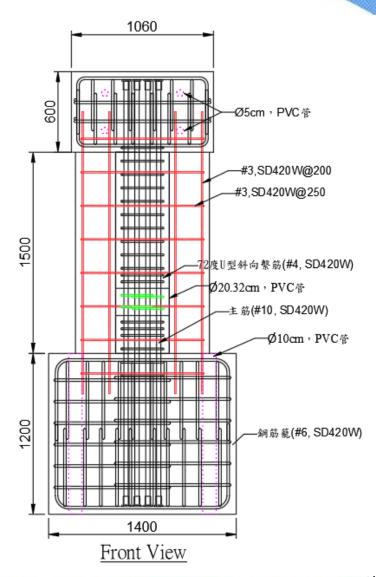
正常斷面 單位:mm



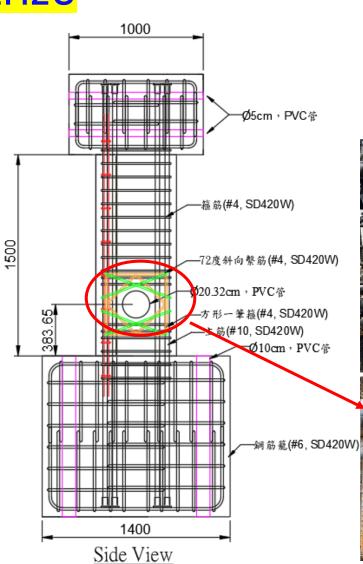
試體2H4T

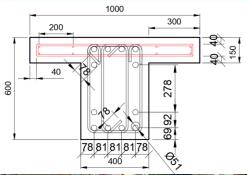
實際試體斜向筋配置


上部繫筋


底部繫筋

試體1H2U


NTUST


Life-cycle

of Structural

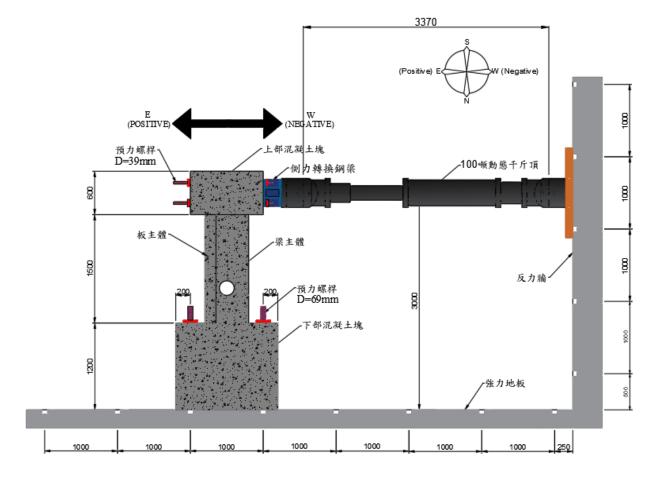
Engineering

試體1H2U

正常斷面 單位:mm

59

設計參數表


試體	穿孔中心與	剪力	套管大小	混凝土	穿孔補強筋種類		
名稱	底部距離	跨距	(材質)	強度	雙方型	U型	其他
2H2U	484 mm (2.38D)	1800 mm	8"(PVC)	28 MPa	О	8支	-
2H4T	484 mm (2.38D)	1800 mm	8"(PVC)	28 MPa	О	-	斜向繫筋
1H2U	384 mm (1.88D)	1800 mm	8"(PVC)	28 MPa	О	8支	-

D:孔徑

配置方式:直立式懸臂梁

試驗場地:國家地震研究中心實驗場

- 一.緒論
- 二. 文獻回顧
- 三. 試體設計與規劃

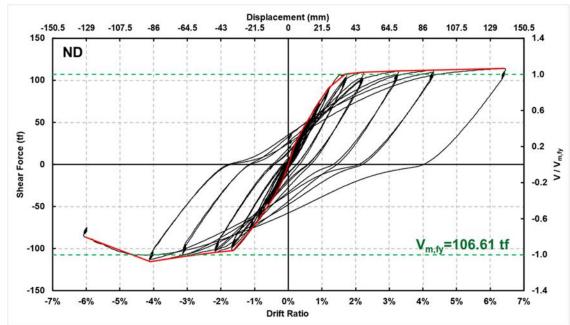
四.試驗過程與結果

五.試驗分析與討論

六.結論與建議

四、試驗過程與結果

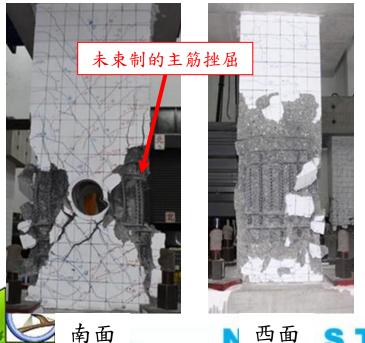
- 4.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究
- 4.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究
- 4.3 楊哲端(2025)- 具圖形穿孔之T型RC梁配筋設計研究

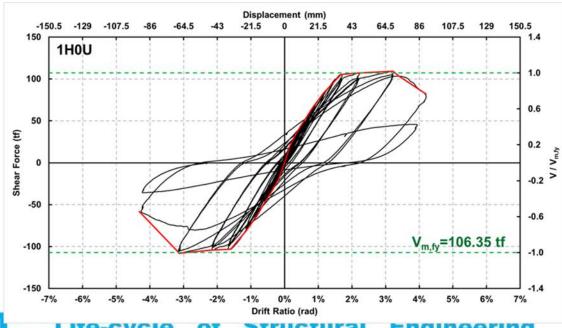


試體ND

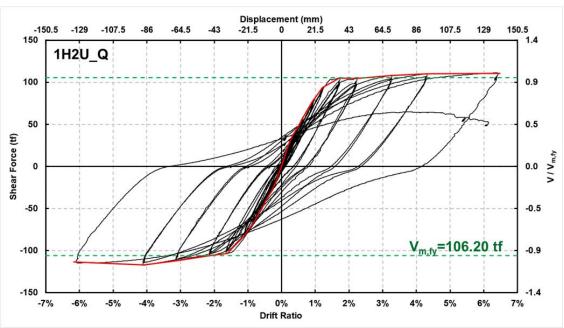
- 3.0%→底部裂縫逐漸增加
- 4.0 % →試體達最大側力115 tf
- 6.0%→主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下降

ic 南面


西面

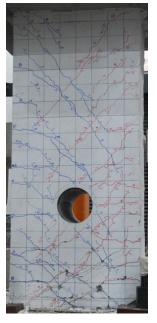

試體1H0U

- 2.0%→開孔兩側裂縫明顯增加,並達最大側 力強度109.03 tf
- 4.0%→沿通過穿孔處斜向裂縫滑動,混凝土 大量崩落,強度低於50%



試體1H2U_Q

- 1.5%→穿孔下方裂縫逐漸增加
- 3.0%→裂縫集中穿孔下方發展
- 6.0 % C1→試體達最大側力114 tf
- 6.0 % C2→主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下


南面

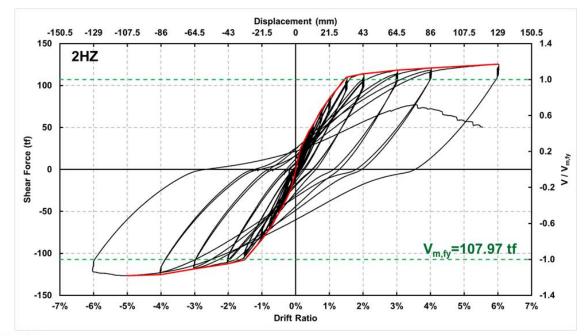

D I U S T

Life-cycle of Structural Engineerin

試體1H3U_Q

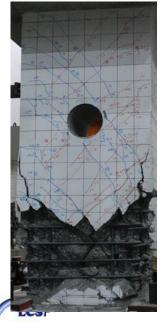
- 0.25%→穿孔兩側出現些許裂縫
- 4.0%→至4.0%尖峰變形角前裂縫逐漸均勻發展於梁試體上
- 6.0 %→試體達最大側力113 tf

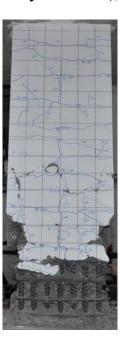
南面

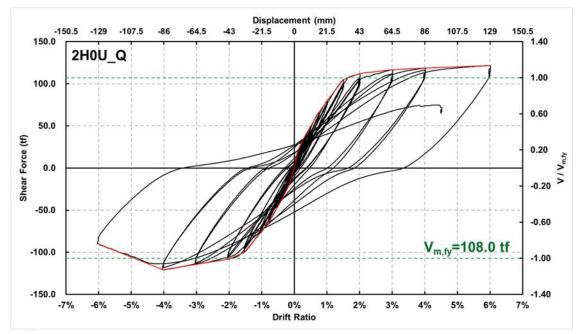

西面

試體2HZ

- 3.0%→至3.0%尖峰變形角前裂縫皆均勻發展於梁試體上
- 4.0%→試體下方裂縫寬度明顯增加
- 6.0 % C1 →試體達最大側力125 tf
- 6.0 % C2 →主筋彎曲將箍筋推出伴隨混凝土大量崩落,強度急速下51.19 tf

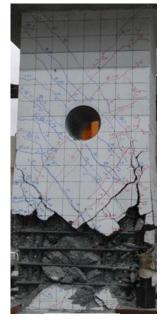



西面


Life-cycle of Structural Engineer

試體2H0U_Q

- 3.0%→至3.0%尖峰變形角前裂縫皆均勻發展於梁試體上
- 4.0%→試體下方裂縫寬度明顯增加
- 6.0 % C1 →試體達最大側力121 tf
- 6.0 % C2 →主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下

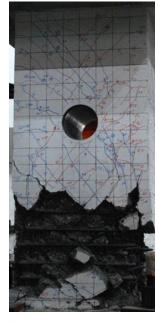

南面

山山山 JST

Life-cycle of Structural Engin

試體2H1U_Q

- 3.0%→至3.0%尖峰變形角前裂縫皆均勻發展於梁試體上
- 6.0 % C1 →試體下方裂縫寬度明顯增加,並達最大側力124 tf
- 6.0 % C2 →主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下



南面

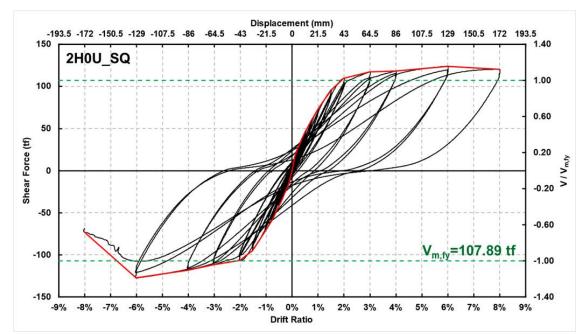
西面

試體2H0U_QM

- 4.0%→至4.0%尖峰變形角前裂縫皆均勻發展於梁試體上
- 6.0 %→試體下方裂縫寬度明顯增加,並達最大側力129 tf
- 8.0 % C1 →主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下

Displacement (mm) 2H0U_QM 100 Shear Force (tf) $V_{m,fv} = 107.69 \text{ tf}$ -100 **Drift Ratio**

南面


西面

試體2H0U SQ

- 4.0%→至4.0%尖峰變形角前裂縫皆均勻發展於梁試體上
- 6.0 %→試體下方裂縫寬度明顯增加,並達最大側力127 tf
- 8.0 % C1 →主筋彎曲將箍筋推出,伴隨混凝土大量崩落,強度急速下

LCSI 南面

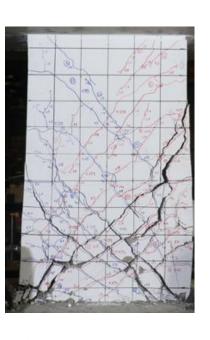
西面

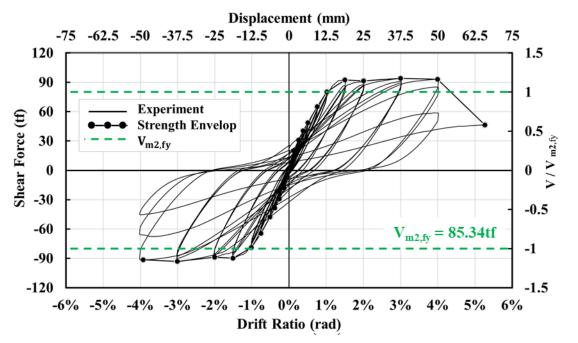
批次	試體編號	破壞位置	破壞模式	試驗強度(tf)
	ND	塑鉸區	撓剪	115
1 ST	1H0U	開孔處	撓剪	108
	1H2U_Q	塑鉸區	撓剪	114
	1H3U_Q	塑鉸區	撓剪	113
	2HZ	塑鉸區	撓剪	125
2 nd	2H1U_Q	塑鉸區	撓剪	124
	2H0U_QM	塑鉸區	撓剪	129
	2H0U_SQ	塑鉸區	撓剪	127
	2H0U_Q	塑鉸區	撓剪	121

四、試驗過程與結果

4.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究

4.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究

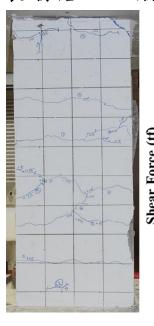

4.3 楊哲端(2025)- 具圓形穿孔之T型RC梁配筋設計研究

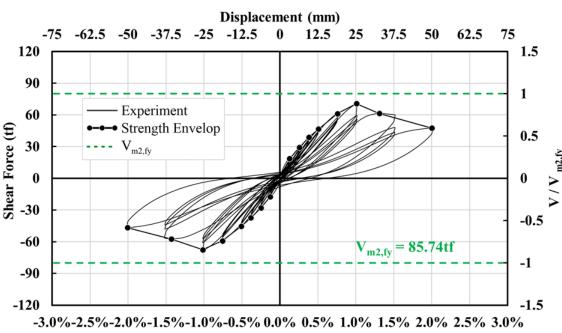

四、試驗過程與結果-4.2何胤頤(2023)

試體ND

- 2.0%→底部裂縫逐漸增加,大部分主筋降伏。
- 3.0 % →試體達最大側力 94.08 tf。
- 4.0%→底部裂縫寬度明顯增加,伴隨混凝土大量崩落,強度急速下降。

南面


西面


試體OSOQ

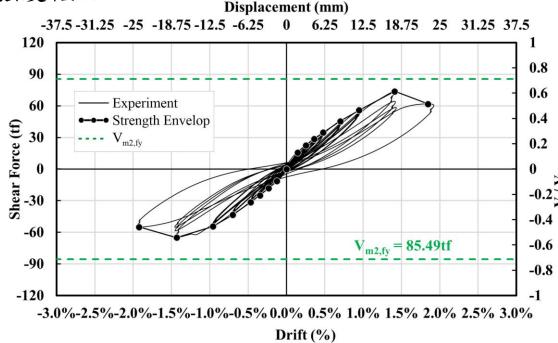
- 0.75%→穿孔處裂縫增加,出現孔際裂縫。
- 1.0 % →穿孔肋筋降伏, 達最大側力強度70.72 tf。
- 1.5 % →穿孔主筋降伏,肋筋降伏,穿孔處最大裂縫達4 mm。
- 2.0 % →混凝土開裂崩落,主筋露出,強度落至80%。

南面

西面

Life-cycle of Structural Engineering

Drift Ratio (rad)


試體1S0Q

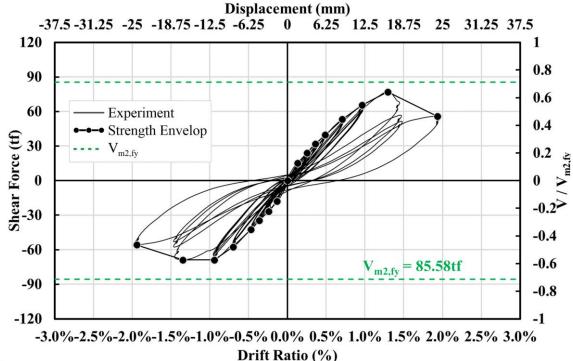
- 0.75%→穿孔處裂縫增加,出現孔際裂縫。
- $1.0\% \rightarrow$ 切過孔際之裂縫明顯增加。
- 1.5%→穿孔主筋降伏,肋筋降伏,達最大側力強度73.82 tf。

2.0 % → 裂縫寬度大於4 mm, 強度低於80 %。

南面

NTUST

Life-cycle of Structural


Engineering

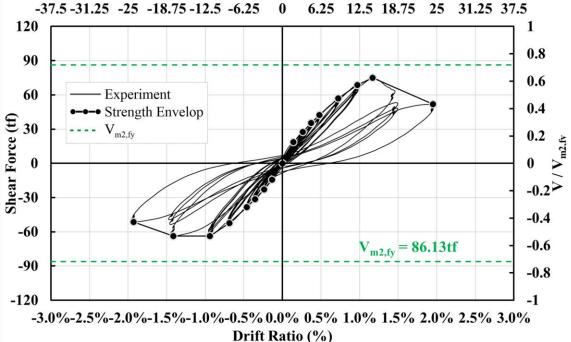
試體**0S1Q**

- 0.75%→穿孔處裂縫增加,出現孔際裂縫。
- 1.0%→切過孔際之裂縫明顯增加。
- 1.5%→穿孔主筋、補強筋降伏,達最大側力強度77.06 tf。
- 2.0%→裂縫寬度大於4mm,強度低於80%。

西面

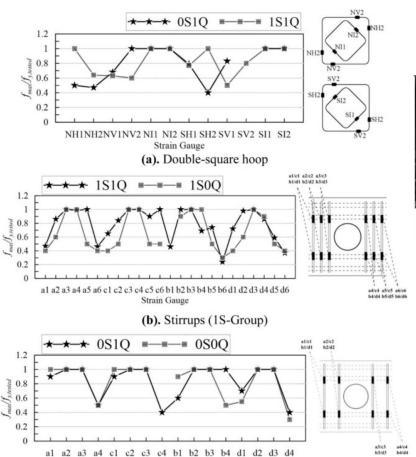
南面

Life-cycle


of Structural Engineering

試體1S1Q

- 0.75%→穿孔處裂縫增加,出現孔際裂縫。
- 1.0%→切過孔際之裂縫明顯增加。
- 1.5%→穿孔主筋,肋筋降伏、內箍降伏,達最大側力強度75.10 tf。
- 2.0% → 裂縫寬度大於4 mm,強度低於80%。 Displacement (mm)


西面

南面

			_			
批次	試體編號	破壞位置	破壞模式	試驗強度	最大側力強度 對應之 層間變位角	強度降至80% 對應之 層間變位角
1 ST	ND 塑鉸區		撓剪	94.08(tf) 3.0 %		4.0 %
	0S0Q)Q		70.72(tf)	1.0 %	1.4 %
2 nd	1S0Q	かった	剪力	73.82(tf)	1.4 %	1.8 %
	0S1Q	穿孔處		77.06(tf)	1.3 %	1.4 %
	1S1Q			75.10(tf)	1.2 %	1.4 %

Strain Gauge

(c). Stirrups (0S-Group)

(a). ND

(b). 0S0Q

(c). 1S0Q

(d). 0S1Q

(e). 1S1Q

Fig. 10. Stress ratio of the reinforcement.

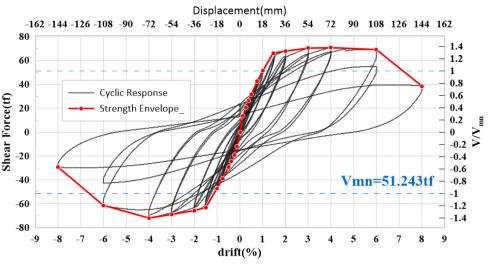
Table 3. Average stress ratio of reinforcement near the opening.

Specimen	0S0Q	1S0Q	0S1Q	1S1Q
Stirrups	1.00	0.79	1.00	0.93
Inner hoop of double square hoop	-	-	1.00	1.00
Total average stress ratio	1.00	0.79	1.00	0.965

四、試驗過程與結果

- 4.1 周玠慈(2022)- 鋼筋混凝土梁穿孔補強新工法之研究
- 4.2 何胤頤(2023)- 具圓形穿孔RC梁之剪力容量計算公式研究
- 4.3 楊哲端(2025)- 具圓形穿孔之T型RC梁配筋設計研究

四、試驗過程與結果-4.3 楊哲端(2025)


試體2H2U

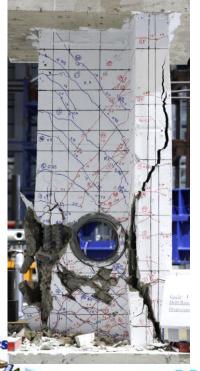
- 2.0%→穿孔處裂裂縫增加。
- 4.0%→剪力面版的裂縫較穿孔邊及撓曲面的裂縫大,此時產生最大側力71.95 tf。
- 6.0%→產生通過穿孔中心的斜向大裂縫,保護層開始剝落,穿孔處產生變形,強度下降到60%。

西面

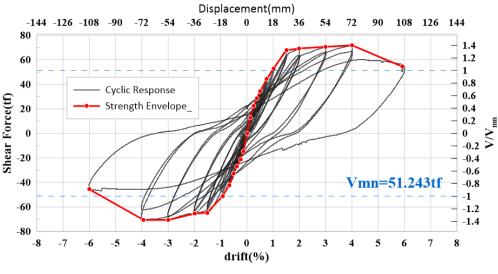
南面

NTU

Life-cycle


of Structural

Engineering


四、試驗過程與結果-4.3 楊哲端(2025)

試體2H4T

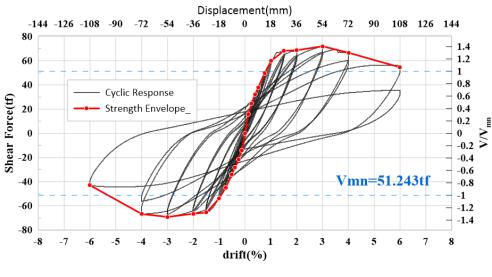
- 3.0%→穿孔處裂及穿孔底部裂縫增加。
- 4.0%→產生通過穿孔中心的斜向大裂縫,產生最大側力71.9 tf。
- 6.0%→穿孔旁混凝土遭挫曲主筋外推,保護層開始剝落,穿孔處產生變形,強度下降到60%。

NT

西面


Life-cycle of Structural

tural Engineering


四、試驗過程與結果- 4.3 楊哲端(2025)

試體1H2U

- 3.0%→穿孔底部裂縫增加,產生最大側力72 tf。
- 4.0%→產生通過穿孔中心的斜向大裂縫,保護層開始剝落。
- 6.0%→版筋嚴重挫曲,穿孔處嚴重變形,強度下降到60%。

Life-cycle

of Structural Engineering

南面

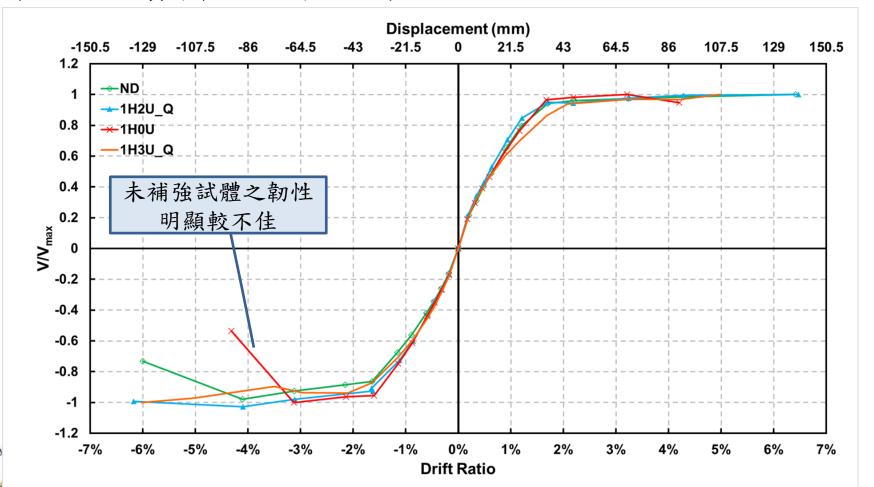
四、試驗過程與結果-4.3 楊哲端(2025)

試體編號	破壞位置	破壞模式	試驗強度 (tf)	最大側力強度下 之層間變位角
2H2U	穿孔處及其 下方塑角區	撓剪	71.95	4.0 %
2H4T	穿孔處及主 筋挫曲	撓剪	71.9	4.0 %
1H2U	穿孔處及其 下方塑角區	撓剪	72	3.0 %

四、試驗過程與結果- 4.3 楊哲端(2025)

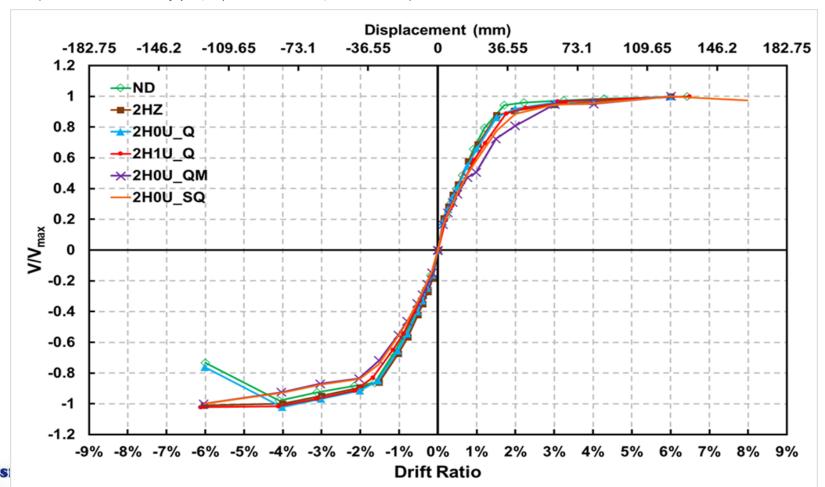
	實驗值(tf)	不同規範剪力設計值 (tf)					
試體名稱		Beam-type	Frame-type	AIJ-1999	AIJ-2018	建議計算式	
2H2U	71.945	170.15	16.51	86.9	59.58	61.053	
2H4T	71.897	170.15	16.51	75.92	59.38	<mark>59.65</mark>	
1H2U	72	170.15	16.51	77.26	60.17	64.78	

- 一.緒論
- 二. 文獻回顧
- 三.試體設計與規劃
- 四.試驗過程與結果
- 五.試驗分析與討論
- 六.結論與建議


五、試驗分析與討論

- 5.1 包絡曲線與總能量消能能力
- 5.2 應變計測量
- 5.3 試體裂縫發展
- 5.4 剪力強度計算

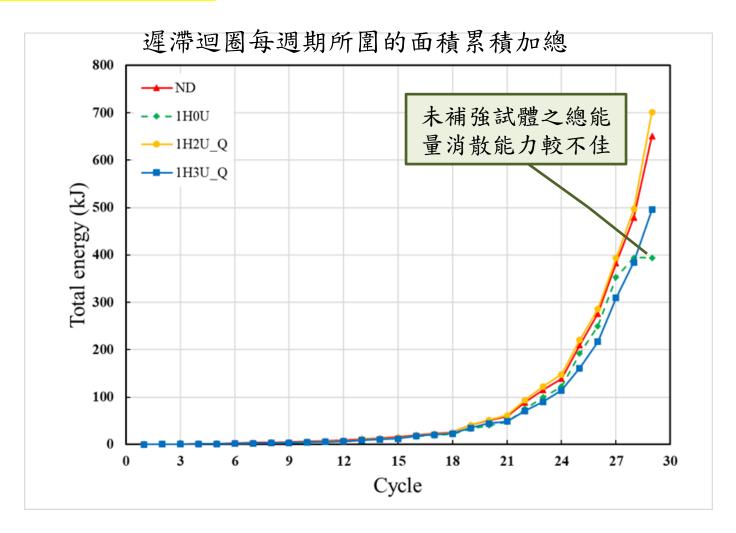
五、試驗分析與討論-5.1包絡曲線與總能量消能能力 正規化包絡曲線比較 1H 周玠慈(2022)


每個層間變位角下第一週期的尖峰值將其線性連接(使用試驗之實際最大值進行正規化)

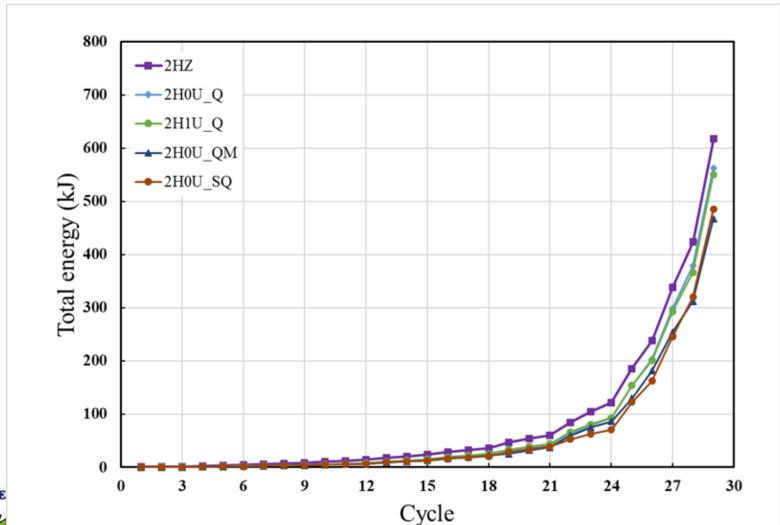
Life-cycle

五、試驗分析與討論-5.1包絡曲線與總能量消能能力 正規化包絡曲線比較 2H 周玠慈(2022)

(使用試驗之實際最大值進行正規化)

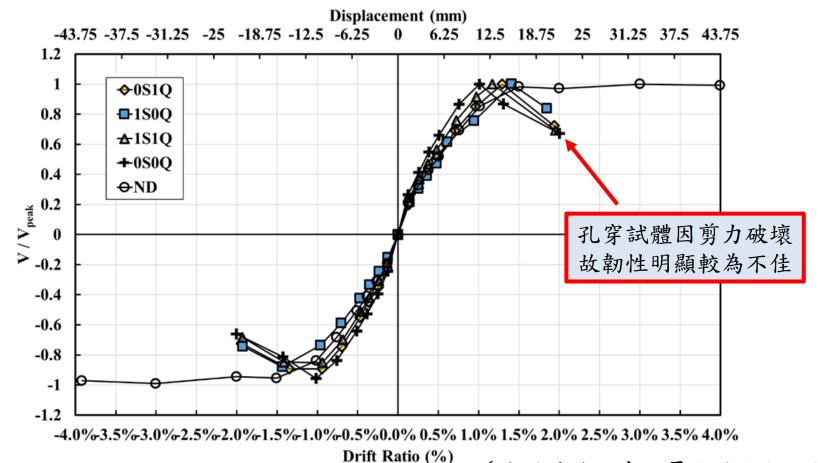


of



總能量消散比較_1H

五、試驗分析與討論-5.1包絡曲線與總能量消能能力 總能量消散比較 2H 周玠慈(2022)



五、試驗分析與討論-5.1包絡曲線與總能量消能能力 何胤頤(2023)

正規化包絡曲線比較 1H

每個層間變位角下第一週期的尖峰值將其線性連接

(使用試驗之實際最大值進行正規化)

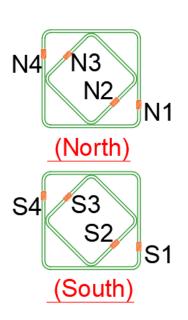
五、試驗分析與討論-5.1包絡曲線與總能量消能能力 楊哲端(2025) 三試體包絡線比較

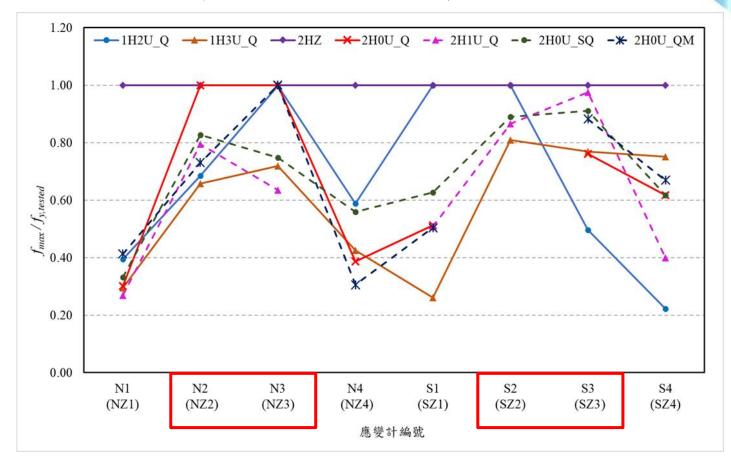
Displacement(mm) -162 -144 -126 -108 -90 -72 -54 -36 -18 0 18 36 54 108 126 144 162 80 60 2H4T 40 1H2U Shear Force(tf) 2H2U 20 NSC 0 -20 -40 -60 -80 -9 -8 9 drift(%)

NSC為沒有穿孔之含樓板的梁試體(對照組)

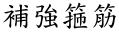
五、試驗分析與討論

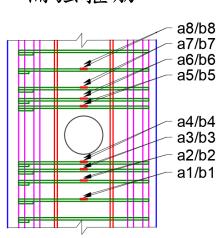
5.1 包絡曲線與總能量消能能力

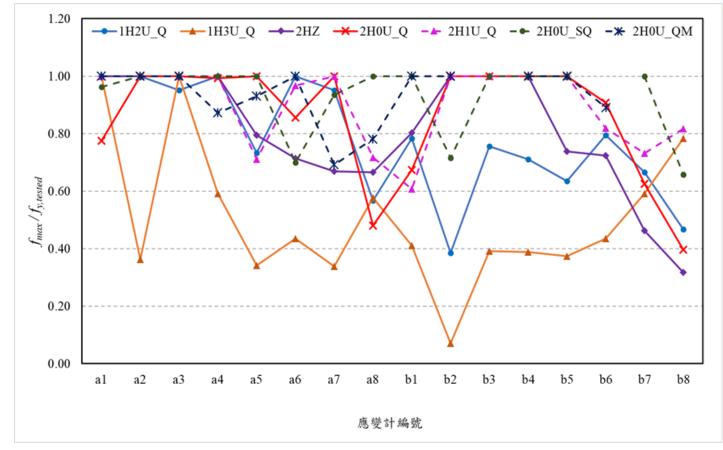

5.2 應變計測量


- 5.3 試體裂縫發展
- 5.4 剪力強度計算

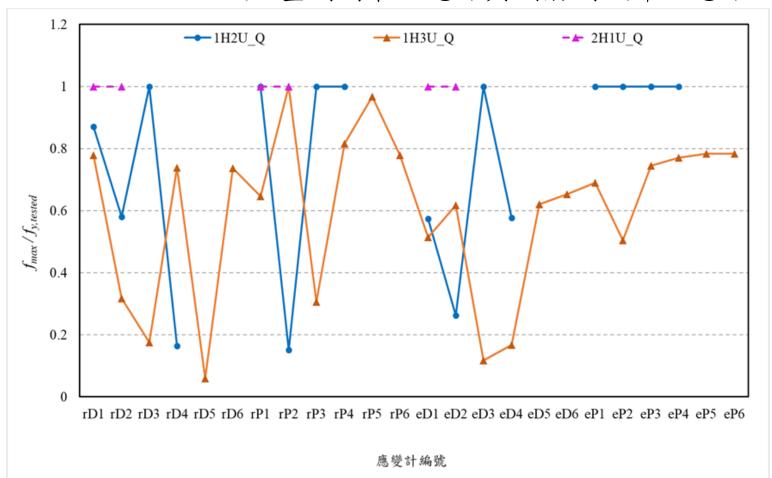
試驗量測到最大應力與鋼筋測試降伏應力之比值

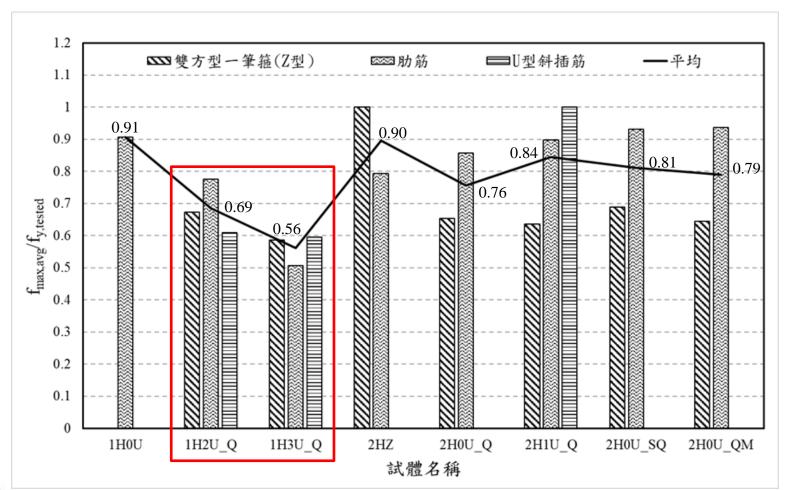

雙方型一筆箍





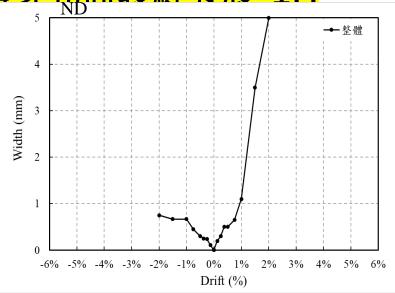
試驗量測到最大應力與鋼筋測試降伏應力之比值

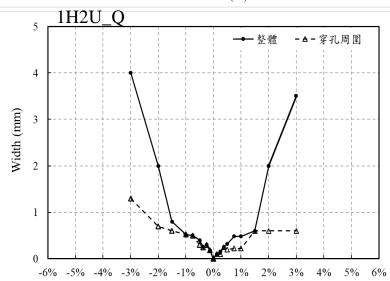


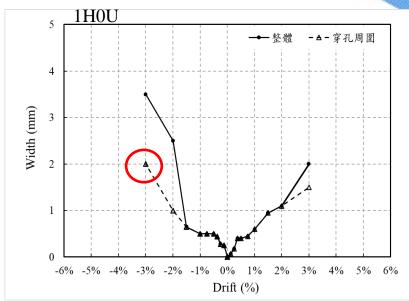


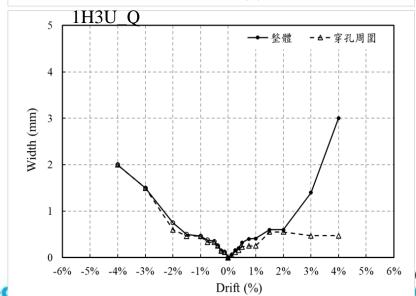
U型斜向補強筋 試驗量測到最大應力與鋼筋測試降伏應力之比值

補強筋最大應力平均與鋼筋拉伸試驗之降伏強度比值

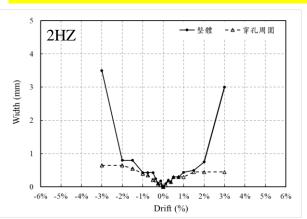

五、試驗分析與討論

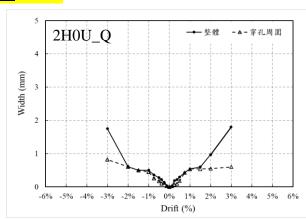

- 5.1 包絡曲線與總能量消能能力
- 5.2 應變計測量
- 5.3 試體裂縫發展
- 5.4 剪力強度計算

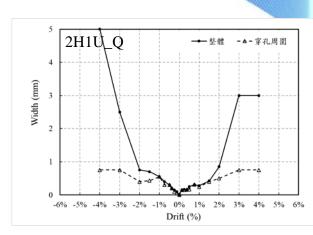

五、試驗分析與討論-5.3 試體裂縫發展 周玠慈(2022)

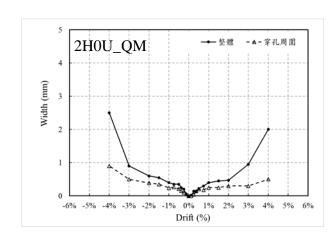

試體穿孔而裂縫發展 1H

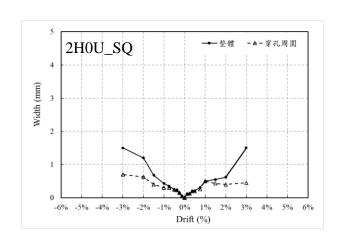
Drift (%)








五. 試驗分析與討論-5.3 試體裂縫發展 周玠慈(2022)


試體穿孔面裂縫發展_2H

五、試驗分析與討論-5.3 試體裂縫發展 周玠慈(2022)

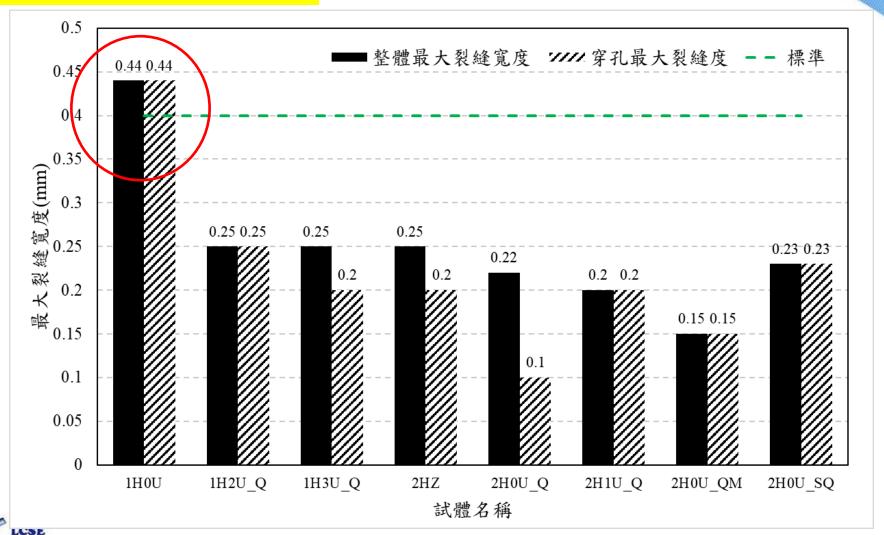
長期荷重下之剪力裂縫

$$Q_{A0} = bj \left\{ \alpha f_s (1 - H/D) + 0.5_w f_t (p_s - 0.002) \right\}$$

長期荷重下之裂縫寬度不得超過0.3 mm~0.4 mm

α:跨深比修正係數

 f_s :混凝土的長期容許剪應力

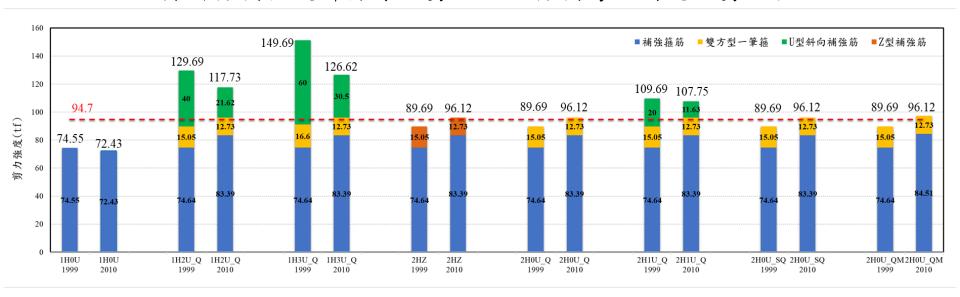

 $_{w}f_{t}$: 箍筋之長期降伏強度

 p_s :補強筋比,上限0.6%

	$Q_{\scriptscriptstyle A0}$ $D_{\scriptscriptstyle {\it Q} A0}$		整體最大裂縫寬度		穿孔周圍最大裂縫寬度	
	(tf)	(%)	(r	(mm)		m)
			正向	負向	正向	負向
1H0U	41.8	0.375	0.40	0.44	0.40	0.44
1H2U_Q	43.7	0.375	0.25	0.25	0.25	0.24
1H3U_Q	44.4	0.375	0.15	0.25	0.15	0.20
2HZ	42.8	0.375	0.15	0.25	0.15	0.20
2H0U_Q	42.2	0.375	0.22	0.22	0.10	0.10
2H1U_Q	41.6	0.375	0.16	0.20	0.16	0.20
2H0U_QM	41.3	0.375	0.14	0.15	0.14	0.15
2H0U_SQ	42.5	0.375	0.20	0.23	0.20	0.23

五、試驗分析與討論-5.3 試體裂縫發展 周玠慈(2022)

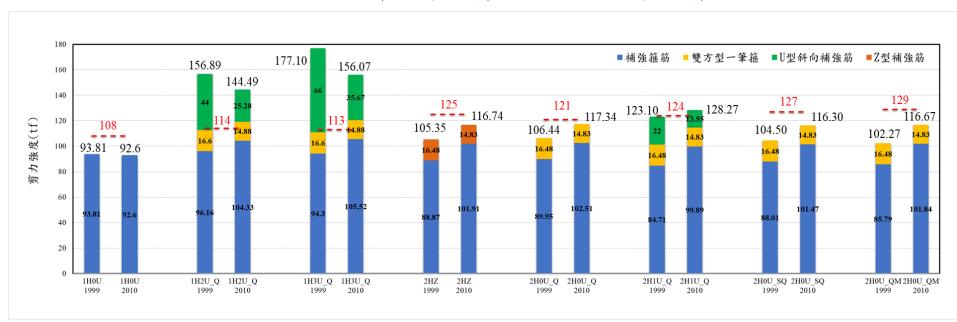
長期荷重下之剪力裂縫


五、試驗分析與討論

- 5.1 包絡曲線與總能量消能能力
- 5.2 應變計測量
- 5.3 試體裂縫發展
- 5.4 強度評估建議計算式

五、試驗分析與討論-5.4強度評估建議計算式 穿孔試體剪力強度計算 周玠慈(2022)

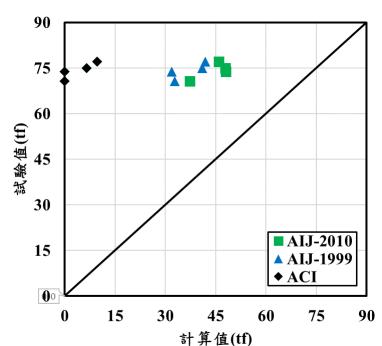
材料標稱強度計算穿孔剪力 VS. 標稱彎矩對應之剪力值



- ✓ 不考慮斜向補強筋時1999較2010保守
- ✓ 部分1999的計算結果過於保守,與試驗結果不相符

五、試驗分析與討論-5.4強度評估建議計算式 周玠慈(2022) 穿孔試體剪力強度計算

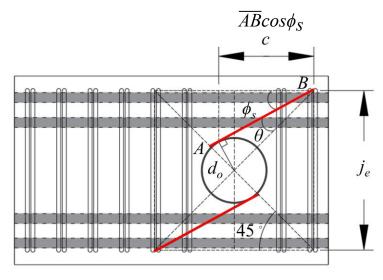
材料測試強度計算穿孔剪力 VS. 試驗最大剪力值


✓ 部分計算結果相當保守

五、試驗分析與討論-5.4強度評估建議計算式 何胤頤(2023)

穿孔梁計算剪力強度和實際差異

- 1. AIJ-1999 與ACI斜向補強筋皆以降伏強度計算。
- AIJ-2010及AIJ-1999並未區分破壞模式,計算值較為保守。
- 3. 桁架機制在無閉合肋筋時,難以定義有效係數%(穿孔上下方)。
- 4. 各文獻實際破壞路徑角度並非45°(ACI)。



補強鋼筋比與建議計算式之計算

Frame-type failure 建議剪力強度計算公式

註:10 為桁架機制之有效深度,即上下肋筋形心距離。

$$V_{n,frame} = \sum A_{w} f_{s}$$

計入破壞路徑通過所有補強筋

計算破壞平面夾角 $\phi_{\rm S}=45^{\rm o}-\theta$

破壞平面水平投影與補強筋比計算

$$p_{WS} = \frac{A_W}{b_e \times \overline{AB} \cos \phi_S}$$

$$f_{S} = \frac{\lambda_{c} v_{o} \sigma_{B}}{(\cos^{2} \phi_{S} + 1) \times p_{WS}}$$

$$f_S \leq f_Y$$

等效降伏應力

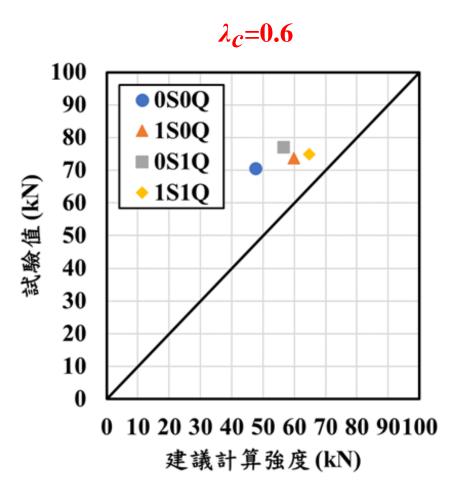
$$\overline{f_y} = \frac{p_{w1}f_{y1} + p_{w2}f_{y2} + \dots + p_{wn}f_{yn}}{p_{w1} + p_{w2} + \dots + p_{wn}}$$

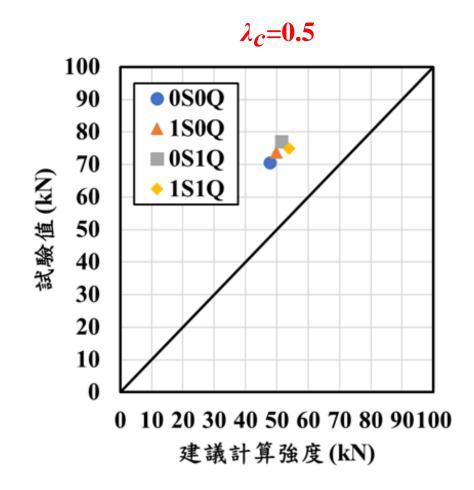
Life-cycle of Structural Engineering

五、試驗分析與討論-5.4強度評估建議計算式 何胤頤(2023)

混凝土壓桿強度修正係數入。

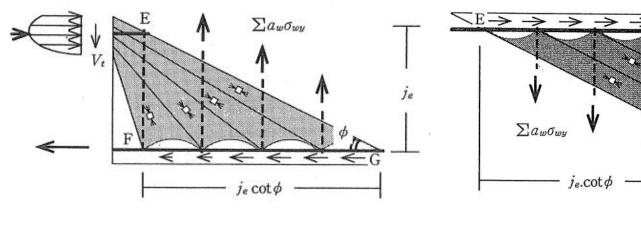
試體名稱	補強筋 平均應力發展 f _S '(kgf/cm ²)	反推混凝土 有效抗壓強度 v _o 'σ _B ' (kgf/cm ²)	AIJ-1999 混凝土有效抗壓強度 ν _ο σ _B (kgf/cm ²)	$\frac{v_{o}'\sigma_{B}'}{v_{o}\sigma_{B}}$
0S0Q	4701.0	80.04	183.05	0.44
1S0Q	<mark>3650.6</mark>	124.31		0.70
0S1Q	4654.9	94.91		0.53
1S1Q	<mark>3705.0</mark>	<mark>111.06</mark>		<mark>0.58</mark>

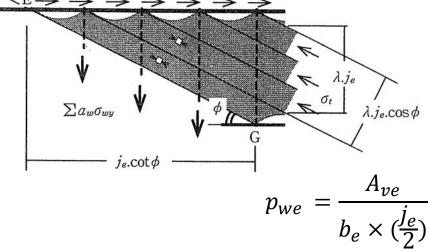

$$\checkmark$$
 定義 $\lambda_c=rac{v_o'\sigma_B'}{v_o\sigma_B}$,介於 $0.4\sim0.7$ 之間。 \checkmark $\lambda_c=0.5$ 、 0.6 、 0.65

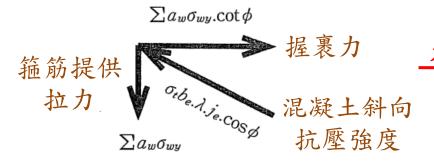

$$\checkmark$$
 $\lambda_c = 0.5 \cdot 0.6 \cdot 0.65$

建議計算方式驗證

何胤頤(2023)

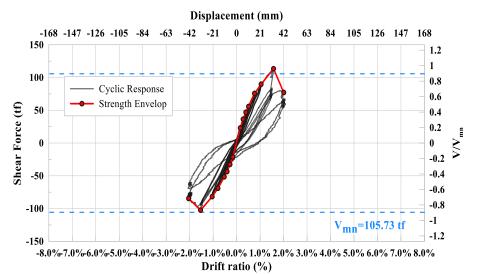


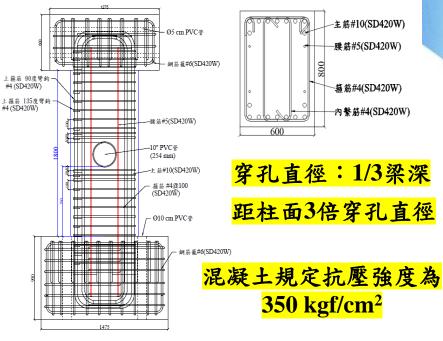


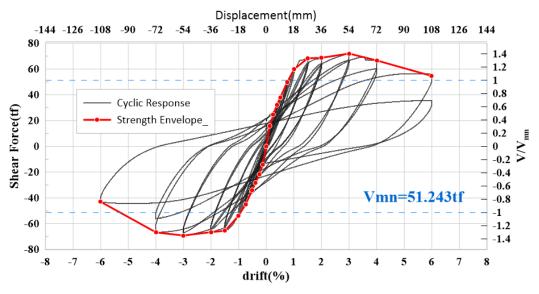


穿孔梁構件

桁架效應的力平衡



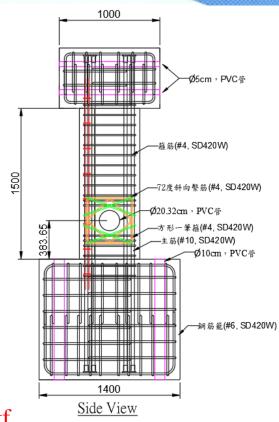

$$V_n = 2 \times p_{we} f_{ye} b_e \times (\frac{j_e}{2} - \frac{D}{2}) \times \cot \phi$$

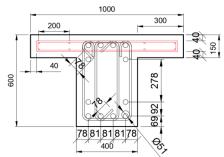

Side View (North)

建議計算式之剪力強度:98.96 tf 試驗之最大剪力:113.4 tf (剪力控制)

建議計算式之標稱剪力強度:82.34 tf 標稱彎矩強度下之剪力:96.62 tf

若加入建議補強鋼筋:117.19 tf



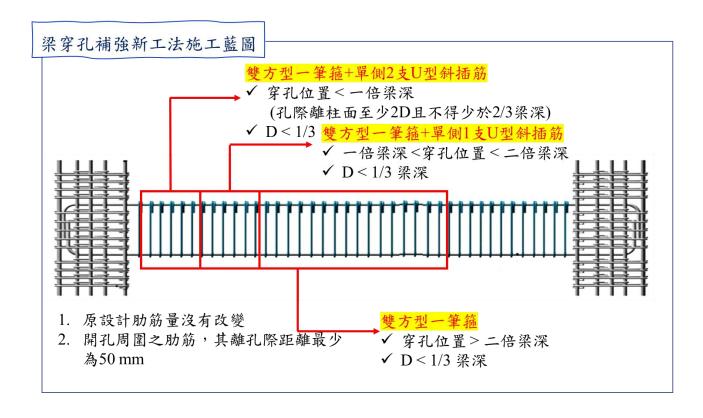


建議計算式之剪力強度:92.24 tf 試驗之最大剪力:72 tf (撓曲控制)

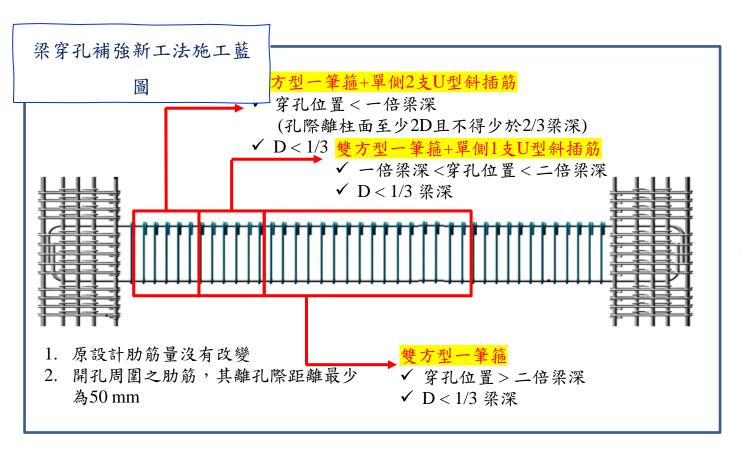
建議計算式之標稱剪力強度:84.1 tf 標稱彎矩強度下之剪力:51.24 tf

(若沒有加入補強鋼筋:51.08 tf)

- 一. 緒論
- 二. 文獻回顧
- 三.試體設計與規劃
- 四.試驗過程與結果
- 五.試驗分析與討論
- 六.結論與建議



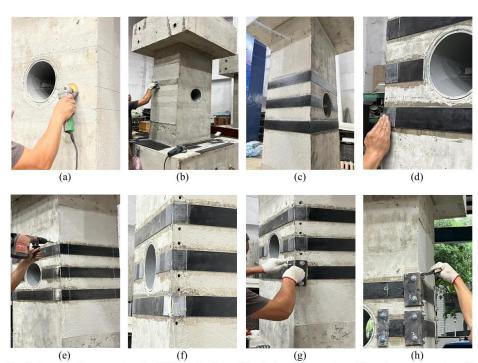
六.結論與建議


1. 可用於梁端二倍梁深內之圓形穿孔

- (1)可依穿孔位置選擇不同補強筋配置形式,共分為三個區域;
- (2) 穿孔邊際離柱面至少2倍穿孔直徑且大於2/3梁深;
- (3) 穿孔直徑最大為8吋管,且必須小於梁深之1/3;
- (4) 二孔間淨距至少為1倍穿孔直徑且大於15 cm;
- (5) 孔際周圍之助筋,其距孔際距離約為取50 mm。

建議穿孔周圍之配筋方式

以梁深60 cm為例, 其最大孔徑為20 cm (8吋管);若保 用6吋管,則柱 30 cm以上 40 cm以上 40 cm以上 40 cm以上 40 cm以上 40 cm 此外,二 40 cm 此外,二 40 cm 。



TAIWAN TECH

National Taiwan University of Science and Technology

建議穿孔周圍之補強方式

Fig. 7. Construction procedure for CFRP strip plates: (a) grind concrete surface; (b) apply epoxy coating; (c) bond CFRP strip plates to concrete; (d) sand bonding area for the steel anchor plates; (e) drill and clean holes for chemical anchors; (f) apply epoxy to CFRP strip and steel anchor plate surfaces; (g) insert chemical anchor bolts; (h) fill with epoxy.

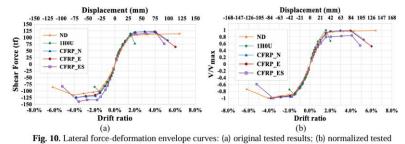


Fig. 10. Lateral force-deformation envelope curves: (a) original tested results; (b) normalized tested results.

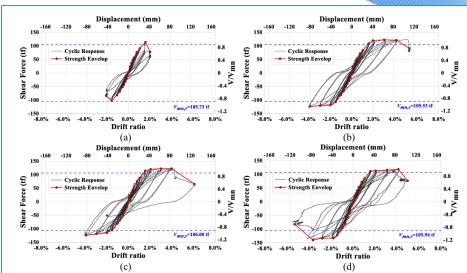


Fig. 8. Force-deformation and envelope curve of each specimen: (a) 1H0U; (b) $CFRP_N$; (c) $CFRP_E$; (d) $CFRP_E$ s.

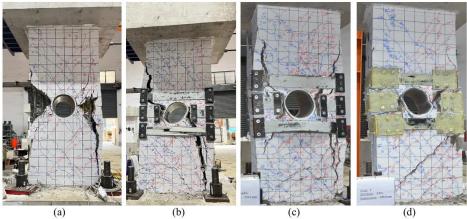


Fig. 9. Failure state of each specimen: (a) 1H0U; (b) CFRP_N; (c) CFRP_E; (d) CFRP_ES.

報告完畢,謝謝聆聽

National Taiwan University of Science and Technology